Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Acta Pharm Sin B ; 14(5): 2247-2262, 2024 May.
Article in English | MEDLINE | ID: mdl-38799631

ABSTRACT

Immunogenic dying tumor cells hold promising prospects as cancer vaccines to activate systemic immunity against both primary and metastatic tumors. Especially, X-ray- induced dying tumor cells are rich in highly immunogenic tumor-associated antigens and self-generated dsDNA as potent adjuvants. However, we found that the X-ray induction process can result in the excessive exposure of phosphatidylserine in cancer vaccines, which can specifically bind with the MerTK receptor on macrophages, acting as a "checkpoint" to facilitate immune silence in the tumor microenvironment. Therefore, we developed a novel strategy combining X-ray-induced cancer vaccines with UNC2250, a macrophage MerTK "checkpoint inhibitor," for treating peritoneal carcinomatosis in colon cancer. By incorporating UNC2250 into the treatment regimen, immunosuppressive efferocytosis of macrophages, which relies on MerTK-directed recognition of phosphatidylserine on vaccines, was effectively blocked. Consequently, the immune analysis revealed that this combination strategy promoted the maturation of dendritic cells and M1-like repolarization of macrophages, thereby simultaneously eliciting robust adaptive and innate immunity. This innovative approach utilizing X-ray-induced vaccines combined with a checkpoint inhibitor may provide valuable insights for developing effective cancer vaccines and immunotherapies targeting colon cancer.

2.
J Control Release ; 369: 746-764, 2024 May.
Article in English | MEDLINE | ID: mdl-38599547

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a critical illness characterized by severe lung inflammation. Improving the delivery efficiency and achieving the controlled release of anti-inflammatory drugs at the lung inflammatory site are major challenges in ARDS therapy. Taking advantage of the increased pulmonary vascular permeability and a slightly acidic-inflammatory microenvironment, pH-responsive mineralized nanoparticles based on dexamethasone sodium phosphate (DSP) and Ca2+ were constructed. By further biomimetic modification with M2 macrophage membranes, hybrid mineralized nanovesicles (MM@LCaP) were designed to possess immunomodulatory ability from the membranes and preserve the pH-sensitivity from core nanoparticles for responsive drug release under acidic inflammatory conditions. Compared with healthy mice, the lung/liver accumulation of MM@LCaP in inflammatory mice was increased by around 5.5 times at 48 h after intravenous injection. MM@LCaP promoted the polarization of anti-inflammatory macrophages, calmed inflammatory cytokines, and exhibited a comprehensive therapeutic outcome. Moreover, MM@LCaP improved the safety profile of glucocorticoids. Taken together, the hybrid mineralized nanovesicles-based drug delivery strategy may offer promising ideas for enhancing the efficacy and reducing the toxicity of clinical drugs.


Subject(s)
Anti-Inflammatory Agents , Dexamethasone , Glucocorticoids , Lung , Nanoparticles , Respiratory Distress Syndrome , Animals , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacokinetics , Glucocorticoids/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Dexamethasone/therapeutic use , Dexamethasone/analogs & derivatives , Tissue Distribution , Nanoparticles/chemistry , Mice , Respiratory Distress Syndrome/drug therapy , Lung/metabolism , Lung/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Macrophages/drug effects , Macrophages/metabolism , Male , Drug Liberation , Pneumonia/drug therapy , Pneumonia/chemically induced , RAW 264.7 Cells , Drug Delivery Systems , Calcium/metabolism , Cytokines/metabolism
3.
J Control Release ; 369: 215-230, 2024 May.
Article in English | MEDLINE | ID: mdl-38508529

ABSTRACT

In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Dexamethasone , Glycyrrhiza , Inflammation , Macrophages , Nanoparticles , Neutrophils , Animals , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Apoptosis/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Nanoparticles/chemistry , Macrophages/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Glycyrrhiza/chemistry , Mice, Inbred C57BL , Male , Mice , Phagocytosis/drug effects , Humans , Sepsis/drug therapy , Sepsis/immunology , Respiratory Distress Syndrome/drug therapy , RAW 264.7 Cells , Efferocytosis
4.
ACS Nano ; 18(2): 1658-1677, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38166370

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is a clinically severe respiratory disease that causes severe medical and economic burden. To improve therapeutic efficacy, effectively targeting delivery to the inflamed lungs and inflamed cells remains an ongoing challenge. Herein, we designed engineered biomimetic nanovesicles (DHA@ANeu-DDAB) by fusion of lung-targeting functional lipid, neutrophil membrane containing activated ß2 integrins, and the therapeutic lipid, docosahexaenoic acid (DHA). By the advantage of lung targeting lipid and ß2 integrin targeting adhesion, DHA@ANeu-DDAB can first target lung tissue and further target inflammatory vascular endothelial cells, to achieve "tissue first, cell second" hierarchical delivery. In addition, the ß2 integrins in DHA@ANeu-DDAB could bind to the intercellular cell adhesion molecule-1/2 (ICAM-1/2) ligand on the endothelium in the inflamed blood vessels, thus inhibiting neutrophils' infiltration in the blood circulation. DHA administration to inflamed lungs could effectively regulate macrophage phenotype and promote its anti-inflammatory activity via enhanced biosynthesis of specialized pro-resolving mediators. In the lipopolysaccharide-induced ARDS mouse model, DHA@ANeu-DDAB afforded a comprehensive and efficient inhibition of lung inflammation and promoted acute lung damage repair. Through mimicking physiological processes, these engineered biomimetic vesicles as a delivery system possess good potential in targeting therapy for ARDS.


Subject(s)
Neutrophils , Quaternary Ammonium Compounds , Respiratory Distress Syndrome , Animals , Mice , Humans , Neutrophils/metabolism , Endothelial Cells/metabolism , Biomimetics , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Lung/metabolism , Integrins , Lipids
5.
Acta Pharm Sin B ; 13(10): 4318-4336, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799395

ABSTRACT

Delayed diabetic wound healing has placed an enormous burden on society. The key factors limiting wound healing include unresolved inflammation and impaired angiogenesis. Platelet-rich plasma (PRP) gel, a popular biomaterial in the field of regeneration, has limited applications due to its non-injectable properties and rapid release and degradation of growth factors. Here, we prepared an injectable hydrogel (DPLG) based on PRP and laponite by a simple one-step mixing method. Taking advantages of the non-covalent interactions, DPLG could overcome the limitations of PRP gels, which is injectable to fill irregular injures and could serve as a local drug reservoir to achieve the sustained release of growth factors in PRP and deferoxamine (an angiogenesis promoter). DPLG has an excellent ability in accelerating wound healing by promoting macrophage polarization and angiogenesis in a full-thickness skin defect model in type I diabetic rats and normal rats. Taken together, this study may provide the ingenious and simple bioactive wound dressing with a superior ability to promote wound healing.

6.
ACS Appl Mater Interfaces ; 15(36): 42378-42394, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37658814

ABSTRACT

The interaction between nanoparticles and cells is closely associated with the therapeutic effects of nanomedicine. Nanoparticles could be transported among cells, but the process-related mechanism remains to be further explored. In this study, it was found that endocytosed cationic polymer nanoparticles (cNPs) could be excreted in an extracellular vesicle (EV)-coated form (cNP@EVs). It was deduced that cNPs may pass through early endosomes, multivesicular bodies (MVBs), and autophagic MVBs within cells. Moreover, a high level of autophagy facilitated the exocytosis process. Since EVs were the effective vehicles for conveying biological information and substances, cNP@EVs were proved to be efficient forms for the intercellular transportation of nanoparticles and have the potential as efficient biomimetic drug delivery systems. These properties endowed cNP@EVs with deep penetration and enhanced antitumor activity. Our findings provided a proof-of-concept for understanding the transfer process of nanoparticles among cells and may help us to further utilize EV-mediated transportation of nanoparticles, therefore, expanding its clinical application.


Subject(s)
Extracellular Vesicles , Nanoparticles , Neoplasms , Humans , Autophagy , Transport Vesicles , Polymers , Neoplasms/drug therapy
7.
J Control Release ; 359: 359-372, 2023 07.
Article in English | MEDLINE | ID: mdl-37290722

ABSTRACT

Whole tumor cells can act as effective antigen depots and have been regarded as prospective candidate for cancer vaccines. However, the clinical outcomes of whole tumor cell vaccine were restricted by the poor immunogenicity and potential in vivo oncogenicity risks. Herein, a simple and effective cancer vaccine named frozen dying tumor cells (FDT) was constructed to initiate a cascade of immune attacks against cancer. By introducing immunogenic dying tumor cells and integrating cryogenic freezing technology, FDT was endowed with high immunogenicity, good in vivo safety, and long-time storage superiority. In syngeneic mice with malignant melanoma, FDT primed the polarization of follicular helper T cells and the differentiation of germinal center B cells in lymph nodes, and promoted the infiltration of cytotoxic CD8+ T cells in the tumor microenvironment, triggering the dual activation of humoral and cellular immunity. Of note, when combined with cytokines and immune checkpoint inhibitors, the FDT vaccine achieved 100% eradication of pre-existing tumors in mice, as demonstrated in the peritoneal metastasis model of colorectal carcinoma. Taken together, our work suggests an efficient cancer vaccine inspired by dying tumor cells and provides an alternative treatment candidate for cancer.


Subject(s)
Cancer Vaccines , Melanoma , Mice , Animals , CD8-Positive T-Lymphocytes , Immunity, Humoral , Immunity, Cellular , Cancer Vaccines/therapeutic use , Melanoma/drug therapy , Tumor Microenvironment
8.
ACS Appl Mater Interfaces ; 15(20): 24134-24148, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37163695

ABSTRACT

In recent years, microbiota-based tumor immunotherapy has become a hotspot in cancer research. However, the use of microorganisms alone to activate the immune response for antitumor therapy was unsatisfactory. In this study, we biosynthesized gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) based on yeast microcapsules to activate the immune response for antitumor treatment in synergy with chemodynamic therapy (CDT) and photothermal therapy (PTT). We generated AuNPs and PtNPs on yeast microcapsules (YAP) and fabricated nanoscale particles (Bre-YAP) by ultrasonic fragmentation and differential centrifugation. Bre-YAP retained the glucan component of yeast as an adjuvant; in the meantime, these two kinds of metal nanoparticles contained were excellent CDT and PTT mediators. By inspection, they could reach a high level of distribution in tumors and tumor-draining lymph nodes (TDLNs). Under the laser irradiation of tumors, this immunological nanomaterial significantly remodeled the microenvironments of tumors and TDLNs. The primary tumors were effectively inhibited or even eradicated, and the overall survival of mice was significantly improved as well. Therefore, yeast microcapsule-based Bre-YAP with immune properties could be used as an effective cancer treatment modality.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Animals , Mice , Phototherapy , Metal Nanoparticles/chemistry , Gold/chemistry , Saccharomyces cerevisiae , Capsules , Cell Line, Tumor , Platinum/chemistry , Nanoparticles/chemistry , Neoplasms/pathology , Immunotherapy , Tumor Microenvironment
9.
Adv Sci (Weinh) ; 10(2): e2204178, 2023 01.
Article in English | MEDLINE | ID: mdl-36424135

ABSTRACT

Biological vesicles, containing genetic materials and proteins of the original cells, are usually used for local or systemic communications among cells. Currently, studies on biological vesicles as therapeutic strategies or drug delivery carriers mainly focus on exogenously generated biological vesicles. However, the limitations of yield and purity caused by the complex purification process still hinder their clinical transformation. Recently, it has been reported that living organisms, including cells and bacteria, can produce functional/therapeutic biological vesicles within body automatically. Therefore, using organisms to produce endogenous biological vesicles in body as drug/bio-information delivery carriers has become a potential therapeutic strategy. In this review, the current development status and application prospects of in situ organism-produced biological vesicles are introduced. The advantages and effects of this endogenous biological vesicles-based strategy in drug delivery and disease treatments are analyzed. According to the type of endogenous biological vesicles, they are divided into four categories: exosomes, platelet-derived microparticles, apoptotic bodies, and bacteria-released outer membrane vesicles. And finally, the shortcomings of current research and future development are analyzed. This review is believed to open up the application of endogenous biological vesicles in the field of biomedicine and shed light on current research.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Drug Delivery Systems , Exosomes/metabolism , Extracellular Vesicles/metabolism , Drug Carriers/metabolism
10.
J Mater Chem B ; 11(2): 244-260, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36512384

ABSTRACT

Inflammatory bowel disease (IBD) is a type of recurrent intestinal diseases. Natural product molecules have been gradually developed into an important source of anti-inflammatory drugs for treating IBD owing to their high anti-inflammatory activity, well known safety, structural specificity and therapeutic mechanism diversity. However, most of the natural products are restricted by poor solubility in actual application. How to achieve satisfactory bioavailability during the treatment of IBD is one of the urgent problems to be solved in the current research. Micro/nano drug delivery systems could improve the solubility of drugs with targeted delivery of anti-inflammatory drugs to the colon with responsive release property. Therefore, using micro/nano drug delivery systems, the problems mentioned above involving natural product molecules in the treatment of IBD could be solved. According to the compositions of the intestinal tract and inflammatory characteristics of IBD, the strategies of using micro/nano drug delivery systems for natural products could be summarized in two steps: targeted delivery and responsive release. In this review, the targeted and responsive release strategies of the micro/nano drug delivery systems combined with their anti-inflammatory effects in IBD animal models to illustrate that the proposed strategies could be potential treatments for symptomatic IBD are described.


Subject(s)
Biological Products , Inflammatory Bowel Diseases , Animals , Nanoparticle Drug Delivery System , Biological Products/pharmacology , Biological Products/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Pharmaceutical Preparations , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
11.
Adv Healthc Mater ; 12(6): e2202209, 2023 01.
Article in English | MEDLINE | ID: mdl-36401821

ABSTRACT

Cell-derived nanovesicles are widely utilized as therapeutic agents for cancer therapy. Current research mostly focuses on their ability to activate antitumor cellular immunity. However, whether they can activate and participate in antitumor humoral immunity is rarely studied. Here, doxorubicin-loaded hybrid cell nanovesicles (DNVs) are designed for boosting antitumor humoral and cellular immunity. The hybrid cell nanovesicles are generated through fusion of nanovesicles derived from M1-type macrophages and 4T1 tumor cells. It is found that DNVs can accumulate at tumor tissues and draining lymph nodes effectively, which results in the activation of antitumor immune response and significant inhibition of tumor progression. During this process, dendritic cells are effectively activated, subsequently inducing cytotoxicity T lymphocytes-mediated cellular immunity. Furthermore, DNVs elicit the antitumor humoral immunity through boosting T follicular helper cells and germinal center B cells. By analyzing the mechanism behind humoral immunity activation, it is found that M1-type macrophages repolarized by DNVs play an important role. In general, besides antitumor cellular immunity, the proposed hybrid nanovesicles provide a promising strategy for enhancing antitumor humoral immunity by macrophages repolarization and germinal center B cells activation.


Subject(s)
Immunity, Humoral , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Macrophages , Germinal Center , Doxorubicin/pharmacology
12.
ACS Nano ; 16(9): 15124-15140, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36037505

ABSTRACT

Acute respiratory distress syndrome (ARDS) has been a life threat for patients in ICUs. Vast efforts have been devoted, while no medication has proved viable, which may be ascribed to inadequate drug delivery to damaged tissues and insufficient control of lung inflammation. Given the anti-inflammatory role of M2-type macrophages, M2 macrophage-derived nanovesicles and lung-targeting liposomes are cofused to fabricate hybrid liposomes-nanovesicles (LNVs). Benefiting from the incorporated lung-homing moiety, LNVs demonstrate high pulmonary accumulation with a lung/liver ratio of 14.9, which is approximately 53.3-fold of free nanovesicles. Thus, M2 macrophage-derived nanovesicles can be delivered to lung tissues for executing immunoregulatory functions. LNVs display phagocytosis by the infiltrated neutrophils and macrophages, exhibiting sustained release of preloaded IKK-2 inhibitor (TPCA-1). The integrated nanosystems demonstrate multidimensional suppression of the overwhelming inflammation, such as decreasing infiltration of inflammatory cells, achieving restraint on cytokine storms and alleviating oxidative stress. Therefore, the improved therapeutic outcome in ARDS mice is obtained. Altogether, the hybrid nanoplatform provides a versatile drug delivery paradigm for integrating biological nanovesicles and therapeutic molecules by cofusion of nanovesicles with liposomes, improving lung biodistribution and accomplishing a boosted anti-inflammatory response for ARDS therapy.


Subject(s)
Cytokine Release Syndrome , Respiratory Distress Syndrome , Animals , Anti-Inflammatory Agents/pharmacology , Biomimetics , Delayed-Action Preparations , Liposomes , Lung , Mice , Respiratory Distress Syndrome/drug therapy , Tissue Distribution
13.
Acta Pharm Sin B ; 12(5): 2550-2567, 2022 May.
Article in English | MEDLINE | ID: mdl-35646526

ABSTRACT

In the development of chemo-immunotherapy, many efforts have been focusing on designing suitable carriers to realize the co-delivery of chemotherapeutic and immunotherapeutic with different physicochemical properties and mechanisms of action. Besides, rapid drug release at the tumor site with minimal drug degradation is also essential to facilitate the antitumor effect in a short time. Here, we reported a cancer cell membrane-coated pH-responsive nanogel (NG@M) to co-deliver chemotherapeutic paclitaxel (PTX) and immunotherapeutic agent interleukin-2 (IL-2) under mild conditions for combinational treatment of triple-negative breast cancer. In the designed nanogels, the synthetic copolymer PDEA-co-HP-ß-cyclodextrin-co-Pluronic F127 and charge reversible polymer dimethylmaleic anhydride-modified polyethyleneimine endowed nanogels with excellent drug-loading capacity and rapid responsive drug-releasing behavior under acidic tumor microenvironment. Benefited from tumor homologous targeting capacity, NG@M exhibited 4.59-fold higher accumulation at the homologous tumor site than heterologous cancer cell membrane-coated NG. Rapidly released PTX and IL-2 enhanced the maturation of dendritic cells and quickly activated the antitumor immune response in situ, followed by prompted infiltration of immune effector cells. By the combined chemo-immunotherapy, enhanced antitumor effect and efficient pulmonary metastasis inhibition were achieved with a prolonged median survival rate (39 days).

14.
J Nanobiotechnology ; 20(1): 226, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35549947

ABSTRACT

BACKGROUND: Conventional chemotherapy has poor efficacy in triple-negative breast cancer (TNBC) which is highly heterogeneous and aggressive. Imaging-guided therapy is usually combined with diverse treatment modalities, could realize the integration of diagnosis and treatments. Therefore, the primary challenge for combinational therapy is designing proper delivery systems to accomplish multiple synergistic effects. RESULTS: Herein, a facile nanoplatform was manufactured to fulfill the all-in-one approaches for TNBC combinational therapy. Fe3+-based metal-phenolic networks (MPNs) with bovine serum albumin (BSA) modification served as drug delivery carriers to encapsulate bleomycin (BLM), forming BFE@BSA NPs. The self-assembly mechanism, pH-responsive drug release behavior, and other physicochemical properties of this system were characterized. The potential of BFE@BSA NPs as photothermal transduction agents and magnetic resonance imaging (MRI) contrast agents was explored. The synergistic anti-tumor effects consisting of BLM-induced chemotherapy, Fenton reactions-mediated chemodynamic therapy, and photothermal therapy-induced apoptosis were studied both in vitro and in vivo. Once internalized into tumor cells, released BLM could cause DNA damage, while Fenton reactions were initiated to produce highly toxic •OH. Upon laser irradiation, BFE@BSA NPs could convert light into heat to achieve synergistic effects. After intravenous administration, BFE@BSA NPs exhibited great therapeutic effects in 4T1 tumor xenograft model. Moreover, as T1-weighted MRI contrast agents, BFE@BSA NPs could provide diagnosis and treatment monitoring for individualized precise therapy. CONCLUSIONS: A nano-system that integrated imaging and combinational therapy (chemotherapy, chemodynamic therapy and photothermal therapy) were developed to kill the tumor and monitor therapeutic efficacy. This strategy provided an all-in-one theranostic nanoplatform for MRI-guided combinational therapy against TNBC.


Subject(s)
Nanoparticles , Neoplasms , Triple Negative Breast Neoplasms , Cell Line, Tumor , Contrast Media , Drug Carriers/therapeutic use , Humans , Magnetic Resonance Imaging , Nanoparticles/chemistry , Neoplasms/drug therapy , Phototherapy/methods , Photothermal Therapy , Serum Albumin, Bovine/therapeutic use , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy
15.
J Nanobiotechnology ; 19(1): 415, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895243

ABSTRACT

BACKGROUND: Immunochemotherapy is a potent anti-tumor strategy, however, how to select therapeutic drugs to enhance the combined therapeutic effect still needs to be explored. METHODS AND RESULTS: Herein, a magnetic resonance nanoprobe (MnP@Lip) with STING (Stimulator of INterferon Genes) activation character was synthesized and co-administered with platinum-based chemotherapeutics for enhanced immunochemotherapy. MnP@Lip nanoparticles was prepared by simple fabrication process with good reproducibility, pH-sensitive drug release behavior and biocompatibility. In vitro experiments elucidated that Mn2+ can promote the polarization of M0 and/or M2 macrophages to M1 phenotype, and promote the maturation of BMDC cells. Upon Mn2+ treatment, the STING pathway was activated in tumor cells, mouse lung epithelial cells, and immune cells. More importantly, anti-tumor experiments in vivo proved that MnP@Lip combined with platinum-based chemotherapeutics increased T cells infiltration in the tumor microenvironment, and inhibited tumor growth in the orthotopic therapeutic and postoperative tumor models. CONCLUSIONS: This kind of therapeutic strategy that combined MnP@Lip nanoparticles with platinum-based chemotherapeutics may provide a novel insight for immunochemotherapy.


Subject(s)
Antineoplastic Agents , Molecular Probes , Nanoparticles , Platinum , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cells, Cultured , Female , Immunotherapy , Macrophages/drug effects , Magnetic Resonance Imaging , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Nanoparticles/chemistry , Nanoparticles/metabolism , Neoplasms, Experimental , Platinum/chemistry , Platinum/pharmacokinetics , Platinum/pharmacology , Tumor Microenvironment/drug effects
16.
Small ; 17(50): e2103984, 2021 12.
Article in English | MEDLINE | ID: mdl-34723421

ABSTRACT

The biosynthesis of nanomedicine has gained enormous attention and exhibited promising prospects, while the underlying mechanism and advantage remain not fully understood. Here, a cell-reactor based on tumor cells is developed to obtain biogenetic gold nanoparticles (Au@MC38) for sensitizing radiotherapy and boosting immune responses. It demonstrates that the intracellular biomineralization and exocytosis process of Au@MC38 can be regulated by the cellular metabolites level and other factors, such as glutathione and reactive oxygen species (ROS), autophagy, and UV irradiation. The elucidation of mechanisms may promote the understanding of interaction principles between nanoparticles and biosystems in the process of biosynthesis. Combined with radiotherapy, Au@MC38 strengthens the radiation-induced DNA damage and ROS generation, thus aggravating cell apoptosis and necrosis. Benefiting from homologous targeting and transcytosis effect, Au@MC38 demonstrates good tumor distribution. Local radiation-induced immunogenic cell death initiates an effective immune response. Especially, CD8a+ dendritic cells are significantly increased in mice that received combinatorial treatment. This radio-sensitization strategy has demonstrated the effective inhibition on primary and metastatic tumors, and achieved satisfactory survival benefit in combinatorial with immune checkpoint blockade. Thus, this bio-inspired synthetic strategy may impulse the development of biosynthesis and its therapeutic applications, contributing to a non-invasive and efficient modality for nanomedicine exploitation.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Animals , Cell Line, Tumor , Gold , Immunity , Mice , Nanomedicine , Neoplasms/therapy
17.
ACS Appl Mater Interfaces ; 13(33): 39003-39017, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433253

ABSTRACT

Improving tumor immunogenicity is critical for increasing the responsiveness of triple-negative breast cancer (TNBC) to anti-PD-(L)1 treatment. Here, we verified that chidamide (CHI), an epigenetic modulator, could elicit immunogenic cell death within TNBC to enhance cancer immunogenicity and elicit an antitumor immune response. Additionally, CHI increased the expression level of PD-L1, MHC I, and MHC II on cancer cells, which contributed to T-cell recognition and PD-1/PD-L1 blockade therapy response. The synergistic antitumor efficacy of CHI and PD-L1 blockade therapy was further explored through liposomes co-delivering CHI and BMS-202 (a small-molecule PD-L1 inhibitor). The liposomes possessed good biocompatibility, security, and controllable drug release and endowed therapeutics drugs with favorable tumor accumulation. Furthermore, the drug-loaded liposomes could obviously boost the antitumor immunity of TNBC through CHI-enhanced tumor immunogenicity and BMS-202-mediated PD-L1 blockade, thereby effectively inhibiting the growth of primary and metastatic tumors with an inhibitory rate of metastasis of up to 96%. In summary, this work provided a referable and optional approach for clinical antitumor therapy based on the combination of an epigenetic modulator and PD-1/PD-L1 blockade therapy.


Subject(s)
Acetamides/chemistry , Aminopyridines/chemistry , Antineoplastic Agents/pharmacology , Benzamides/chemistry , Drug Carriers/chemistry , Immune Checkpoint Inhibitors/chemistry , Pyridines/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Acetamides/pharmacology , Aminopyridines/pharmacology , Animals , Benzamides/pharmacology , Biocompatible Materials/chemistry , Cell Line, Tumor , Combined Modality Therapy/methods , Drug Liberation , Epigenesis, Genetic/drug effects , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Pyridines/pharmacology , Small Molecule Libraries/chemistry , Tissue Distribution , Treatment Outcome
18.
Acta Pharm Sin B ; 11(10): 3060-3091, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33977080

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.

19.
Drug Deliv ; 28(1): 134-143, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33356629

ABSTRACT

This study aimed to synthesize and characterize L-epigallocatechin gallate (EGCG) complexed Mn2+ nanoparticle (L-EGCG-Mn), a proof-of-concept pH-sensitive manganese core nanoparticle (NP), and compare its magnetic resonance (MR) properties with those of Gd-DTPA, both in vitro and in vivo. Reverse microemulsion was used to obtain the L-EGCG-Mn NPs. The physicochemical properties of L-EGCG-Mn were characterized using dynamic light scattering, transmission electron microscopy, and near-infrared fluorescence small animal live imaging. The in vitro relaxivity of L-EGCG-Mn incubated with different pH buffer solutions (pH = 7.4, 6.8, 5.5) was evaluated. The T1-weighted MR imaging (MRI) properties were evaluated in vitro using hypoxic H22 cells as well as in H22 tumor-bearing mice. Cytotoxicity tests and histological analysis were performed to evaluate the safety of L-EGCG-Mn. L-EGCG-Mn showed good biocompatibility, stability, pH sensitivity, and tumor-targeting ability. Moreover, when the pH was decreased from 7.4 to 5.5, the r 1 relaxivity of L-EGCG-Mn was shown to gradually increase from 1.79 to 6.43 mM-1·s-1. Furthermore, after incubation with L-EGCG-Mn for 4 h, the T1 relaxation time of hypoxic H22 cells was significantly lower than that of normoxic H22 cells (1788 ± 89 vs. 1982 ± 68 ms, p=.041). The in vivo analysis showed that after injection, L-EGCG-Mn exhibited a higher MRI signal compared to Gd-DTPA in H22 tumor-bearing mice (p < .05). Furthermore, L-EGCG-Mn was found to have a good safety profile via cytotoxicity tests and histological analysis. L-EGCG-Mn has a good safety profile and pH sensitivity and may thus serve as a potential MRI contrast agent.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Catechin/analogs & derivatives , Contrast Media , Magnetic Resonance Imaging , Manganese/chemistry , Nanoparticles/chemistry , Peritoneal Neoplasms/diagnostic imaging , Animals , Carcinoma, Hepatocellular/secondary , Catechin/chemistry , Cell Line, Tumor , Gadolinium DTPA , Hydrogen-Ion Concentration , Liver Neoplasms/pathology , Mice , Nanoparticles/ultrastructure , Peritoneal Neoplasms/secondary , Proof of Concept Study
20.
ACS Appl Mater Interfaces ; 12(14): 16018-16030, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32192326

ABSTRACT

Blocking immune checkpoints with monoclonal antibody has been verified to achieve potential clinical successes for cancer immunotherapy. However, its application has been impeded by the "cold" tumor microenvironment. Here, weak acidity-responsive nanoparticles co-loaded with CRISPR/Cas9 and paclitaxel (PTX) with the ability to convert "cold" tumor into "hot" tumor are reported. The nanoparticles exhibited high cargo packaging capacity, superior transfection efficiency, well biocompatibility, and effective tumor accumulation. The CRISPR/Cas9 encapsulated in nanoparticles could specifically knock out cyclin-dependent kinase 5 gene to significantly attenuate the expression of programmed death-ligand 1 on tumor cells. More importantly, PTX co-delivered in nanoparticles could significantly induce immunogenic cell death, reduce regulatory T lymphocytes, repolarize tumor-associated macrophages, and enhance antitumor immunity. Therefore, the nanoparticles could effectively convert cold tumor into hot tumor, achieve effective tumor growth inhibition, and prolong overall survival from 16 to 36 days. This research provided a referable strategy for the development of combinatorial immunotherapy and chemotherapy.


Subject(s)
Cell Proliferation/drug effects , Melanoma, Experimental/immunology , Nanoparticles/chemistry , Paclitaxel/pharmacology , Acids/chemistry , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Cell Line, Tumor , Cyclin-Dependent Kinase 5/genetics , Humans , Immunogenic Cell Death/drug effects , Immunogenic Cell Death/genetics , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Nanoparticles/therapeutic use , Paclitaxel/chemistry , Paclitaxel/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Transfection , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...