Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Cancer Lett ; 592: 216919, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704133

ABSTRACT

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.

2.
J Clin Oncol ; : JCO2302078, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748939

ABSTRACT

PURPOSE: Targeted Agent and Profiling Utilization Registry is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results of a cohort of patients with biliary tract cancer (BTC) with ERBB2/3 amplification, overexpression, or mutation treated with pertuzumab plus trastuzumab are reported. METHODS: Eligible patients had advanced BTC, measurable disease (RECIST v1.1), Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, tumors with ERBB2/3 alterations, and a lack of standard treatment options. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16+ weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS: Twenty-nine patients were enrolled from February 2017 to January 2022, and all had advanced BTC with an ERBB2/3 alteration. One patient was not evaluable for efficacy. One complete response, eight partial responses, and two SD16+ were observed for DC and OR rates of 40% (90% CI, 27 to 100) and 32% (95% CI, 16 to 52), respectively. The null hypothesis of 15% DC rate was rejected (P = .0015). Four patients had at least one grade 3 adverse event (AE) or serious AE at least possibly related to treatment: anemia, diarrhea, infusion-related reaction, and fatigue. CONCLUSION: Pertuzumab plus trastuzumab met prespecified criteria to declare a signal of activity in patients with BTC and ERBB2/3 amplification, overexpression, or mutation.

3.
Int J Radiat Oncol Biol Phys ; 118(5): 1217-1227, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38199384

ABSTRACT

PURPOSE: This study aimed to provide a novel noninvasive method to quantify abscopal immune activation and predict combinational treatment response using [68Ga]-NOTA-GZP positron emission tomography (PET) imaging. METHODS AND MATERIALS: 4T1 breast cancer cells were implanted bilaterally in the mammary fat pad of Balb/c mice and Lewis's lung cancer cells (LLC) were implanted bilaterally on the shoulders of C57/Bl6 mice. One of the tumors received a single fraction of 12 Gy irradiation followed by combination of concurrent PD-1 and CTLA-4 inhibitors or controls. Tumor growth of the irradiated and nonirradiated tumors was measured and compared with 12 Gy irradiation only, checkpoint inhibitor only, and no treatment control group. Changes in granzyme B activity were assessed with [68Ga]-NOTA-GZP PET imaging from baseline and every 3 days until day 9. RESULTS: In the 4T1 model, concurrent treatment with dual checkpoint inhibitors and radiation resulted in reduction of the irradiated tumor volume at day 30. At this same time point, the nonirradiated tumor volume for combination treatment decreased significantly, consistent with abscopal immune activation. Similarly, in the LLC model, concurrent treatment inhibited tumor growth on the nonirradiated tumor at day 15. On day 9, granzyme B PET signal in both 4T1 and LLC models was significantly higher in the nonirradiated tumors that responded to concurrent treatment compared with subsequent nonresponding tumors. A similar lack of granzyme B signal was observed in the nonirradiated tumors from mice that received radiation or checkpoint inhibitors only and control tumors. Receiver operating characteristic analysis identified a PET threshold of 1.505 and 1.233 on day 9 that predicted treatment response in 4T1 and LLC models, respectively. CONCLUSIONS: [68Ga]-NOTA-GZP PET imaging was able to noninvasively predict abscopal immune activation before subsequent tumor volume changes after combination treatment. It provides a potential translational paradigm for investigating distal immune activation postradiation in a clinical setting.


Subject(s)
Gallium Radioisotopes , Positron-Emission Tomography , Animals , Mice , Granzymes , Cell Line, Tumor , Combined Modality Therapy
4.
Med Dosim ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37867087

ABSTRACT

To determine the feasibility and utility of conebeam CT-guided stereotactic radiotherapy for locally recurrent, previously irradiated head and neck cancer (HNC) patients on the Halcyon, a ring delivery system (RDS). This research aims to quantify plan quality, treatment delivery accuracy, and overall efficacy by comparing against novel clinical TrueBeam HyperArc method. Ten recurrent HNC patients who were treated at our institution on TrueBeam (6MV-FFF) for 3 to 40 Gy in 3 to 5 fractions with noncoplanar HyperArc plans were re-planned on Halcyon (6MV-FFF). These plans were re-planned with the same Acuros-based dose engine. Additionally, we used site-specific full/partial coplanar VMAT arcs. PTV coverage, mean dose to GTV, maximum dose to organs-at-risk (OAR), beam-on time (BOT), and quality assurance (QA) results were investigated and compared. Halcyon provided highly conformal HNC SRT plans with slightly superior mean PTVD99 coverage (96.7% vs 95.5%, p = 0.071), and slightly lower mean GTV dose (37.8 Gy vs 38.2 Gy, p = 0.241) when compared to the HyperArc plans. Differences in plan conformality and maximum dose to OARs were statistically insignificant. Due to Halcyon's coplanar geometry, D2cm was significantly higher (p = 0.001) but Halcyon did result in a reduced normal brain dose by 1 Gy on average and up to 5.2 Gy in some cases. Halcyon provided similar patient-specific QA pass rates with a 2%/2mm gamma criteria (98.2% vs 98.5%) and independent in-house Monte Carlo second check results (97.7% vs 98.2%), suggesting identical treatment delivery accuracy. Halcyon plans resulted in slightly longer beam-on time (3.16 vs 2.30 minutes, p = 0.010), however door-to-door patient time is expected to be <10 minutes. Compared to clinical TrueBeam HyperArc, Halcyon SRT plans provided similar plan quality and treatment delivery accuracy with a potentially faster overall treatment using fully automated patient setup and verification. Rapid delivery of recurrent HNC SRT may reduce intrafraction motion errors while also improving patient compliance and comfort. To provide high-quality of HNC SRT similar to HyperArc, we recommend Halcyon users consider commissioning this novel method. This method will be useful for remote and underserved patient cohorts including Halcyon-only clinics as well.

5.
Biomedicines ; 11(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37626587

ABSTRACT

HER2-targeted treatments have improved survival rates in HER2+ breast cancer patients, yet poor responsiveness remains a major clinical obstacle. Recently, HER2+ breast cancer cells, both resistant and responsive to HER2-targeted therapies, have demonstrated sensitivity to poly-(ADP-ribose) polymerase (PARP) inhibition, independent of DNA repair deficiencies. This study seeks to describe biological factors that precede cell viability changes in response to the combination of trastuzumab and PARP inhibition. Treatment response was evaluated in HER2+ and HER2- breast cancer cells. Further, we evaluated the utility of 3'-Deoxy-3'-[18F]-fluorothymidine positron emission tomography ([18F]FLT-PET) imaging for early response assessment in a HER2+ patient derived xenograft (PDX) model of breast cancer. In vitro, we observed decreased cell viability. In vivo, we observed decreased inhibition in tumor growth in combination therapies, compared to vehicle and monotherapy-treated cohorts. Early assessment of cellular proliferation corresponds to endpoint cell viability. Standard summary statistics of [18F]FLT uptake from PET were insensitive to early proliferative changes. Meanwhile, histogram analysis of [18F]FLT uptake indicated the potential translatability of imaging proliferation biomarkers. This study highlights the potential of combined trastuzumab and PARP inhibition in HER2+ breast cancer, while demonstrating a need for optimization of [18F]FLT-PET quantification in heterogeneous models of HER2+ breast cancer.

6.
Pract Radiat Oncol ; 13(5): 466-474, 2023.
Article in English | MEDLINE | ID: mdl-37268193

ABSTRACT

PURPOSE: Stereotactic body radiation therapy (SBRT) is increasingly used as a definitive treatment option for patients with prostate adenocarcinoma. The aim of this study was to assess the late toxicity, patient-reported quality of life outcomes, and biochemical recurrence rates after prostate SBRT with simultaneous integrated boost (SIB) targeting lesions defined by magnetic resonance imaging (MRI). METHODS AND MATERIALS: Patients were eligible if they had biopsy-proven low- or intermediate-risk prostate adenocarcinoma, one or more focal lesions on MRI, and an MRI-defined total prostate volume of <120 mL. All patients received SBRT delivered to the entire prostate to a dose of 36.25 Gy in 5 fractions with an SIB to the lesions seen on MRI to 40 Gy in 5 fractions. Late toxicity was defined as any possible treatment-related adverse event occurring after 3 months from the completion of SBRT. Patient-reported quality of life was ascertained using standardized patient surveys. RESULTS: A total of 26 patients were enrolled. Six patients (23.1%) had low-risk disease and 20 patients had intermediate-risk disease (76.9%). Seven patients (26.9%) received androgen deprivation therapy. Median follow-up was 59.5 months. No biochemical failures were observed. Three patients (11.5%) experienced late grade 2 genitourinary (GU) toxicity requiring cystoscopy, and 7 patients (26.9%) had late grade 2 GU toxicity requiring oral medications. Three patients (11.5%) had late grade 2 gastrointestinal toxicity characterized by hematochezia requiring colonoscopy and steroids per rectum. There were no grade 3 or higher toxicity events observed. The patient-reported quality-of-life metrics at the time of last follow-up were not significantly different than the pre-treatment baseline. CONCLUSIONS: The results of this study support that SBRT to the entire prostate to a dose of 36.25 Gy in 5 fractions with focal SIB to 40 Gy in 5 fractions has excellent biochemical control and is not associated with undue late gastrointestinal or GU toxicity or long-term quality of life decrement. Focal dose escalation with an SIB planning approach may be an opportunity to improve biochemical control while limiting dose to nearby organs at risk.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Radiosurgery , Male , Humans , Prostatic Neoplasms/pathology , Prostate/pathology , Prospective Studies , Radiosurgery/adverse effects , Radiosurgery/methods , Quality of Life , Androgen Antagonists , Adenocarcinoma/radiotherapy , Adenocarcinoma/surgery
7.
JCO Precis Oncol ; 7: e2200505, 2023 02.
Article in English | MEDLINE | ID: mdl-36753688

ABSTRACT

PURPOSE: The TAPUR Study is a phase II basket trial that aims to evaluate activity of approved targeted agents in patients with advanced cancers with potentially actionable genomic variants. Data from a cohort of patients with metastatic castrate-resistant prostate cancer (mCRPC) and BRCA1/2 mutations treated with olaparib are reported. METHODS: Eligible patients with measurable mCRPC were matched to treatment according to protocol-specified genomic matching rules. Patients had no remaining standard treatment options, Eastern Cooperative Oncology Group performance status 0-2, and adequate organ function. Simon's two-stage design was used with a primary end point of disease control, defined as objective response or stable disease of at least 16-week duration. Secondary end points include radiographic progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS: Thirty patients with mCRPC with BRCA1/2 mutations were treated with olaparib. The disease control rate was 69% (95% CI, 51 to 81), and the objective response rate was 58% (95% CI, 37 to 77). The median radiographic progression-free survival and the median overall survival were 38.4 (95% CI, 16.3 to 52.1) weeks and 76.4 (95% CI, 49.3 to 106.0) weeks, respectively. Six of 30 (20%) patients experienced grade 3-4 adverse or serious adverse events including anemia, aspiration, decreased WBC count, and fatigue. CONCLUSION: Olaparib has antitumor activity in patients with mCRPC with BRCA1/2 mutations and warrants further study to determine how to best integrate it into the standard treatment of patients with BRCA1/2-mutated prostate cancer.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , Mutation , Phthalazines/adverse effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology
8.
Breast Cancer Res Treat ; 198(2): 217-229, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36735117

ABSTRACT

PURPOSE: In nonmetastatic hormone receptor-positive and Her2-negative breast cancer, preoperative endocrine therapies can yield outcomes similar with chemotherapy. We evaluated the tolerability and preliminary antitumor activity of preoperative letrozole, everolimus, and carotuximab, a monoclonal antibody targeting endoglin, in nonmetastatic breast cancer. METHODS: Eligible patients had newly diagnosed, stage 2 or 3, hormone receptor-positive and Her2/neu-negative breast cancer. Patients received escalating doses of everolimus; the dose of letrozole and carotuximab were fixed at 2.5 mg PO daily and 15 mg/kg intravenously every 2 weeks, respectively. The primary objective was to determine the safety and tolerability of the combination. Secondary objectives included pharmacokinetic and pharmacodynamic studies and assessments of antitumor activity. RESULTS: Fifteen patients enrolled. The recommended phase 2 dose of everolimus in combination with letrozole and carotuximab was 10 mg PO daily. The most frequent adverse events were headache (67%), fatigue (47%), facial flushing and swelling (47%), gingival hemorrhage (40%), epistaxis (33%), nausea and vomiting (27%). Headache constituted a dose-limiting toxicity. At least two signs of mucocutaneous telangiectasia developed in 92% of patients. Carotuximab accumulated in the extravascular space and accelerated the biodistribution and clearance of everolimus. All patients had residual disease. Gene expression analyses were consistent with downregulation of genes involved in proliferation and DNA repair. Among 6 patients with luminal B breast cancer, 5 converted to luminal A after one cycle of therapy. CONCLUSION: Letrozole, everolimus, and carotuximab were tolerated in combination at their single-agent doses. Pharmacokinetic studies revealed an interaction between everolimus and carotuximab. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov (Identifier: NCT02520063), first posted on August 11, 2015, and is active, not recruiting.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Letrozole , Everolimus , Tissue Distribution , Receptor, ErbB-2/metabolism , Biomarkers, Tumor/genetics , Antibodies, Monoclonal/metabolism , Antineoplastic Combined Chemotherapy Protocols/adverse effects
9.
J Immunother Precis Oncol ; 6(1): 31-49, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751656

ABSTRACT

Cancer manifestation is a multistep process involving accumulation of various genetic and epigenetic changes that results in oncogenic "hallmarks of cancer" processes including genomic instability. Exploitation of aberrant DNA-damage response (DDR) mechanisms in cancer is in part a goal of many therapeutic strategies, and recent evidence supports the role of targeting DDR in modulating the tumor immune microenvironment to enhance immunotherapeutic response. Improved cancer profiling, including next-generation and whole-genome mutational sequencing of tumor tissue, as well as circulating nucleic acids, has enhanced our understanding of the genetic and epigenetic molecular mechanisms in tumorigenesis and will become fundamental to precisely target tumors and achieve cancer control. With the successes of poly(ADP-ribose) polymerase inhibitors (PARPi) and immunotherapies, the intersection of DDR molecular machinery and corresponding antitumor immune response has gained much interest with a focus on achieving therapeutic synergy using DNA damage-targeting agents and immunotherapy. In this review, we provide a bench-to-bedside overview of the fundamentals of DDR signaling and repair as they relate to cancer therapeutic strategies including novel DDR-targeting agents. We also discuss the underlying mechanisms that link DDR signaling to antitumor immunity and immunotherapy efficacy, and how this knowledge can be used to improve precision medicine approaches in the treatment of cancer.

10.
JCO Oncol Pract ; 19(4): e570-e580, 2023 04.
Article in English | MEDLINE | ID: mdl-36630671

ABSTRACT

PURPOSE: Cancer trial participants do not reflect the racial and ethnic diversity in the population of people with cancer in the United States. As a result of multiple system-, patient-, and provider-level factors, including implicit bias, cancer clinical trials are not consistently offered to all potentially eligible patients. MATERIALS AND METHODS: ASCO and ACCC evaluated the utility (pre- and post-test knowledge changes) and feasibility (completion rates, curriculum satisfaction metrics, survey questions, and interviews) of a customized online training program combined with facilitated peer-to-peer discussion designed to help research teams identify their own implicit biases and develop strategies to mitigate them. Discussion focused on (1) specific elements of the training modules; (2) how to apply lessons learned; and (3) key considerations for developing a facilitation guide to support peer-to-peer discussions in cancer clinical research settings. We evaluated discussion via a qualitative assessment. RESULTS: Participant completion rate was high: 49 of 50 participating cancer programs completed training; 126 of 129 participating individuals completed the training (98% response rate); and 119 completed the training and evaluations (92% response rate). Training increased the mean percentage change in knowledge scores by 19%-45% across key concepts (eg, causes of health disparities) and increased the mean percentage change in knowledge scores by 10%-31% about strategies/actions to address implicit bias and diversity concerns in cancer clinical trials. Knowledge increases were sustained at 6 weeks. Qualitative evaluation validated the utility and feasibility of facilitated peer-to-peer discussion. CONCLUSION: The pilot implementation of the training program demonstrated excellent utility and feasibility. Our evaluation affirms that an online training designed to raise awareness about implicit bias and develop strategies to mitigate biases among cancer research teams is feasible and can be readily implemented in cancer research settings.


Subject(s)
Bias, Implicit , Neoplasms , Humans , United States , Feasibility Studies , Neoplasms/therapy
11.
Cancer ; 129(5): 685-696, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36579470

ABSTRACT

PURPOSE: To validate the association between body composition and mortality in men treated with radiation for localized prostate cancer (PCa). Secondarily, to integrate body composition as a factor to classify patients by risk of all-cause mortality. MATERIALS AND METHODS: Participants of NRG/Radiation Therapy Oncology Group (RTOG) 9406 and NRG/RTOG 0126 with archived computed tomography were included. Muscle mass and muscle density were estimated by measuring the area and attenuation of the psoas muscles on a single slice at L4-L5. Bone density was estimated by measuring the attenuation of the vertebral body at mid-L5. Survival analyses, including Cox proportional hazards models, assessed the relationship between body composition and mortality. Recursive partitioning analysis (RPA) was used to create a classification tree to classify participants by risk of death. RESULTS: Data from 2066 men were included in this study. In the final multivariable model, psoas area, comorbidity score, baseline prostate serum antigen, and age were significantly associated with survival. The RPA yielded a classification tree with four prognostic groups determined by age, comorbidity, and psoas area. Notably, the classification among older (≥70 years) men into prognostic groups was determined by psoas area. CONCLUSIONS: This study strongly supports that body composition is related to mortality in men with localized PCa. The inclusion of psoas area in the RPA classification tree suggests that body composition provides additive information to age and comorbidity status for mortality prediction, particularly among older men. More research is needed to determine the clinical impact of body composition on prognostic models in men with PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Aged , Prognosis , Survival Analysis , Body Composition
12.
Nat Commun ; 13(1): 5013, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008408

ABSTRACT

Therapeutic resistance to immune checkpoint blockers (ICBs) in melanoma patients is a pressing issue, of which tumor loss of IFN-γ signaling genes is a major underlying mechanism. However, strategies of overcoming this resistance mechanism have been largely elusive. Moreover, given the indispensable role of tumor-infiltrating T cells (TILs) in ICBs, little is known about how tumor-intrinsic loss of IFN-γ signaling (IFNγR1KO) impacts TILs. Here, we report that IFNγR1KO melanomas have reduced infiltration and function of TILs. IFNγR1KO melanomas harbor a network of constitutively active protein tyrosine kinases centered on activated JAK1/2. Mechanistically, JAK1/2 activation is mediated by augmented mTOR. Importantly, JAK1/2 inhibition with Ruxolitinib selectively suppresses the growth of IFNγR1KO but not scrambled control melanomas, depending on T cells and host TNF. Together, our results reveal an important role of tumor-intrinsic IFN-γ signaling in shaping TILs and manifest a targeted therapy to bypass ICB resistance of melanomas defective of IFN-γ signaling.


Subject(s)
Melanoma , T-Lymphocytes , Humans , Melanoma/drug therapy , Melanoma/genetics , Signal Transduction
13.
JCO Precis Oncol ; 6: e2200165, 2022 07.
Article in English | MEDLINE | ID: mdl-35939768

ABSTRACT

PURPOSE: National Cancer Institute-Molecular Analysis for Therapy Choice is a multicohort trial that assigns patients with advanced cancers to targeted therapies on the basis of central tumor genomic testing. Arm B evaluated afatinib, an ErbB family tyrosine kinase inhibitor, in patients with ERBB2-activating mutations. METHODS: Eligible patients had selected ERBB2 single-nucleotide variants or insertions/deletions detected by the National Cancer Institute-Molecular Analysis for Therapy Choice next-generation sequencing assay. Patients had performance status ≤ 1, left ventricular ejection fraction > 50%, grade ≤ 1 diarrhea, and no prior human epidermal growth factor receptor 2 (HER2) therapy. Patients received afatinib 40 mg once daily in 28-day cycles. The primary end point was objective response rate (ORR). Secondary end points were 6-month progression-free survival, overall survival, toxicity, and molecular correlates. RESULTS: A total of 59 patients were assigned and 40 were enrolled. The median age was 62 years, 78% were female, 68% had performance status = 1, and 58% had received > 3 prior therapies. The confirmed ORR was 2.7% (n = 1 of 37; 90% CI, 0.14 to 12.2), and 6-month progression-free survival was 12.0% (90% CI, 5.6 to 25.8). A confirmed partial response occurred in a patient with adenocarcinoma of extra-mammary Paget disease of skin who progressed after cycle 6. Two unconfirmed partial responses were observed (low-grade serous gynecological tract and estrogen receptor-positive/HER2-negative immunohistochemistry breast ductal carcinoma). Of 12 patients with breast cancer, 1 additional patient with lobular carcinoma (estrogen receptor-positive/HER2 fluorescent in situ hybridization) had a 51% reduction in target lesions but progressed because of a new lesion at cycle 6. The most common (> 20%) treatment-related adverse events were diarrhea (68%), mucositis (43%), fatigue (40%), acneiform rash (30%), dehydration (27%), vomiting (27%), nausea (27%), anemia (27%), and anorexia (22%). Four patients (11%) discontinued because of adverse events. CONCLUSION: Although afatinib did not meet the prespecified threshold for antitumor activity in this heavily pretreated cohort, the response in a rare tumor type is notable. The safety profile of afatinib was consistent with prior studies.


Subject(s)
Breast Neoplasms , Quinazolines , Afatinib/therapeutic use , Breast Neoplasms/metabolism , Diarrhea/chemically induced , Female , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Mutation , National Cancer Institute (U.S.) , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Stroke Volume , United States , Ventricular Function, Left
14.
Front Oncol ; 12: 925718, 2022.
Article in English | MEDLINE | ID: mdl-35795040

ABSTRACT

We reported previously that the BET inhibitor (BETi) JQ1 decreases levels of the DNA repair protein RAD51 and that this decrease is concomitant with increased levels of DNA damage. Based on these findings, we hypothesized that a BETi would augment DNA damage produced by radiation and function as a radiosensitizer. We used clonogenic assays to evaluate the effect of JQ1 ± ionizing radiation (IR) on three pancreatic cancer cell lines in vitro. We performed immunofluorescence assays to assess the impact of JQ1 ± IR on DNA damage as reflected by levels of the DNA damage marker γH2AX, and immunoblots to assess levels of the DNA repair protein RAD51. We also compared the effect of these agents on the clonogenic potential of transfectants that expressed contrasting levels of the principle molecular targets of JQ1 (BRD2, BRD4) to determine whether levels of these BET proteins affected sensitivity to JQ1 ± IR. The data show that JQ1 + IR decreased the clonogenic potential of pancreatic cancer cells more than either modality alone. This anticlonogenic effect was associated with increased DNA damage and decreased levels of RAD51. Further, lower levels of BRD2 or BRD4 increased sensitivity to JQ1 and JQ1 + IR, suggesting that pre-treatment levels of BRD2 or BRD4 may predict sensitivity to a BETi or to a BETi + IR. We suggest that a BETi + IR merits evaluation as therapy prior to surgery for pancreatic cancer patients with borderline resectable disease.

15.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35852875

ABSTRACT

Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy-selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed retention of major genomic alterations in the RTS lines, we did detect a chromosome 12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise analyses indicated that there are multiple molecular routes to acquired radiation resistance. RTS model-specific kinases were identified and targeted with clinically relevant small molecule inhibitors. This cohort of in vivo RTS patient-derived models will enable future preclinical therapeutic testing to help overcome the treatment resistance seen in patients with GBM.


Subject(s)
Glioblastoma , RNA, Long Noncoding , Animals , Disease Models, Animal , Genomics , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Humans , Neoplasm Recurrence, Local , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Xenograft Model Antitumor Assays
16.
J Clin Oncol ; 40(19): 2163-2171, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35588469

ABSTRACT

A concerted commitment across research stakeholders is necessary to increase equity, diversity, and inclusion (EDI) and address barriers to cancer clinical trial recruitment and participation. Racial and ethnic diversity among trial participants is key to understanding intrinsic and extrinsic factors that may affect patient response to cancer treatments. This ASCO and Association of Community Cancer Centers (ACCC) Research Statement presents specific recommendations and strategies for the research community to improve EDI in cancer clinical trials. There are six overarching recommendations: (1) clinical trials are an integral component of high-quality cancer care, and every person with cancer should have the opportunity to participate; (2) trial sponsors and investigators should design and implement trials with a focus on reducing barriers and enhancing EDI, and work with sites to conduct trials in ways that increase participation of under-represented populations; (3) trial sponsors, researchers, and sites should form long-standing partnerships with patients, patient advocacy groups, and community leaders and groups; (4) anyone designing or conducting trials should complete recurring education, training, and evaluation to demonstrate and maintain cross-cultural competencies, mitigation of bias, effective communication, and a commitment to achieving EDI; (5) research stakeholders should invest in programs and policies that increase EDI in trials and in the research workforce; and (6) research stakeholders should collect and publish aggregate data on racial and ethnic diversity of trial participants when reporting results of trials, programs, and interventions to increase EDI. The recommendations are intended to serve as a guide for the research community to improve participation rates among people from racial and ethnic minority populations historically under-represented in cancer clinical trials. ASCO and ACCC will work at all levels to advance the recommendations in this publication.


Subject(s)
Clinical Trials as Topic , Ethnicity , Neoplasms , Patient Selection , Humans , Medical Oncology , Minority Groups , Neoplasms/therapy , Racial Groups , United States
17.
Sci China Life Sci ; 65(11): 2205-2217, 2022 11.
Article in English | MEDLINE | ID: mdl-35579777

ABSTRACT

Patients with hormone receptor (HR)-positive tumors breast cancer usually experience a relatively low pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). Here, we derived a 10-microRNA risk score (10-miRNA RS)-based model with better performance in the prediction of pCR and validated its relation with the disease-free survival (DFS) in 755 HR-positive breast cancer patients (273, 265, and 217 in the training, internal, and external validation sets, respectively). This model, presented as a nomogram, included four parameters: the 10-miRNA RS found in our previous study, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and volume transfer constant (Ktrans). Favorable calibration and discrimination of 10-miRNA RS-based model with areas under the curve (AUC) of 0.865, 0.811, and 0.804 were shown in the training, internal, and external validation sets, respectively. Patients who have higher nomogram score (>92.2) with NAC treatment would have longer DFS (hazard ratio=0.57; 95%CI: 0.39-0.83; P=0.004). In summary, our data showed the 10-miRNA RS-based model could precisely identify more patients who can attain pCR to NAC, which may help clinicians formulate the personalized initial treatment strategy and consequently achieves better clinical prognosis for patients with HR-positive breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Neoadjuvant Therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , MicroRNAs/genetics , Antineoplastic Combined Chemotherapy Protocols , Risk Factors
18.
ACS Appl Bio Mater ; 5(4): 1670-1682, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35294185

ABSTRACT

Nearly 20% of HER2-positive breast cancers develop resistance to HER2-targeted therapies requiring the use of advanced therapies. Silencing RNA therapy may be a powerful modality for treating resistant HER2 cancers due to its high specificity and low toxicity. However, the systemic administration of siRNAs requires a safe and efficient delivery platform because of siRNA's low stability in physiological fluids, inefficient cellular uptake, immunoreactivity, and rapid clearance. We have developed theranostic polymeric vesicles to overcome these hurdles for encapsulation and delivery of small functional molecules and PARP1 siRNA for in vivo delivery to breast cancer tumors. The 100 nm polymer vesicles were assembled from biodegradable and non-ionic poly(N-vinylpyrrolidone)14-block-poly(dimethylsiloxane)47-block-poly(N-vinylpyrrolidone)14 triblock copolymer PVPON14-PDMS47-PVPON14 using nanoprecipitation and thin-film hydration. We demonstrated that the vesicles assembled from the copolymer covalently tagged with the Cy5.5 fluorescent dye for in vivo imaging could also encapsulate the model drug with high loading efficiency (40%). The dye-loaded vesicles were accumulated in tumors after 18 h circulation in 4TR breast tumor-bearing mice via passive targeting. We found that PARP1 siRNA encapsulated into the vesicles was released intact (13%) into solution by the therapeutic ultrasound treatment as quantified by gel electrophoresis. The PARP1 siRNA-loaded polymersomes inhibited the proliferation of MDA-MB-361TR cells by 34% after 6 days of treatment by suppressing the NF-kB signaling pathway, unlike their scrambled siRNA-loaded counterparts. Finally, the treatment by PARP1 siRNA-loaded vesicles prolonged the survival of the mice bearing 4T1 breast cancer xenografts, with the 4-fold survival increase, unlike the untreated mice after 3 weeks following the treatment. These biodegradable, non-ionic PVPON14-PDMS47-PVPON14 polymeric nanovesicles capable of the efficient encapsulation and delivery of PARP1 siRNA to successfully knock down PARP1 in vivo can provide an advanced platform for the development of precision-targeted therapeutic carriers, which could help develop highly effective drug delivery nanovehicles for breast cancer gene therapy.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Dimethylpolysiloxanes , Female , Humans , Mice , Poly (ADP-Ribose) Polymerase-1/genetics , Polymers , Pyrrolidinones , RNA, Small Interfering/genetics
19.
Cancers (Basel) ; 14(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35205763

ABSTRACT

DNA damage repair and tumor hypoxia contribute to intratumoral cellular and molecular heterogeneity and affect radiation response. The goal of this study is to investigate anti-HER2-induced radiosensitization of the tumor microenvironment to enhance fractionated radiotherapy in models of HER2+ breast cancer. This is monitored through in vitro and in vivo studies of phosphorylated γ-H2AX, [18F]-fluoromisonidazole (FMISO)-PET, and transcriptomic analysis. In vitro, HER2+ breast cancer cell lines were treated with trastuzumab prior to radiation and DNA double-strand breaks (DSB) were quantified. In vivo, HER2+ human cell line or patient-derived xenograft models were treated with trastuzumab, fractionated radiation, or a combination and monitored longitudinally with [18F]-FMISO-PET. In vitro DSB analysis revealed that trastuzumab administered prior to fractionated radiation increased DSB. In vivo, trastuzumab prior to fractionated radiation significantly reduced hypoxia, as detected through decreased [18F]-FMISO SUV, synergistically improving long-term tumor response. Significant changes in IL-2, IFN-gamma, and THBS-4 were observed in combination-treated tumors. Trastuzumab prior to fractionated radiation synergistically increases radiotherapy in vitro and in vivo in HER2+ breast cancer which is independent of anti-HER2 response alone. Modulation of the tumor microenvironment, through increased tumor oxygenation and decreased DNA damage response, can be translated to other cancers with first-line radiation therapy.

20.
Clin Cancer Res ; 28(2): 327-337, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34615724

ABSTRACT

PURPOSE: Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of antitumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated. EXPERIMENTAL DESIGN: In this study, we probed the tumor and its surrounding microenvironment with 18F-FMISO PET imaging to noninvasively quantify tumor hypoxia in vivo prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer. RESULTS: Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with ex vivo markers of tumor immune response including cytokines (IFNγ, GZMB, and TNF), damage-associated molecular pattern receptors (TLR2/4), and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to nonresponsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume. CONCLUSIONS: The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , CTLA-4 Antigen , Cell Hypoxia , Humans , Hypoxia , Misonidazole/analogs & derivatives , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Nitroimidazoles , Phosphoramide Mustards , Positron-Emission Tomography/methods , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...