Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36894434

ABSTRACT

BACKGROUND: Stress is a major risk factor for depression, and both are associated with important changes in decision-making patterns. However, decades of research have only weakly connected physiological measurements of stress to the subjective experience of depression. Here, we examined the relationship between prolonged physiological stress, mood, and explore-exploit decision making in a population navigating a dynamic environment under stress: health care workers during the COVID-19 pandemic. METHODS: We measured hair cortisol levels in health care workers who completed symptom surveys and performed an explore-exploit restless-bandit decision-making task; 32 participants were included in the final analysis. Hidden Markov and reinforcement learning models assessed task behavior. RESULTS: Participants with higher hair cortisol exhibited less exploration (r = -0.36, p = .046). Higher cortisol levels predicted less learning during exploration (ß = -0.42, false discovery rate [FDR]-corrected p [pFDR] = .022). Importantly, mood did not independently correlate with cortisol concentration, but rather explained additional variance (ß = 0.46, pFDR = .022) and strengthened the relationship between higher cortisol and lower levels of exploratory learning (ß = -0.47, pFDR = .022) in a joint model. These results were corroborated by a reinforcement learning model, which revealed less learning with higher hair cortisol and low mood (ß = -0.67, pFDR = .002). CONCLUSIONS: These results imply that prolonged physiological stress may limit learning from new information and lead to cognitive rigidity, potentially contributing to burnout. Decision-making measures link subjective mood states to measured physiological stress, suggesting that they should be incorporated into future biomarker studies of mood and stress conditions.


Subject(s)
COVID-19 , Depression , Humans , Depression/psychology , Stress, Psychological , Hydrocortisone/analysis , Pandemics , Stress, Physiological
2.
Hepatology ; 78(5): 1602-1624, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36626639

ABSTRACT

Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated ß-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology
3.
mBio ; 11(4)2020 08 18.
Article in English | MEDLINE | ID: mdl-32817111

ABSTRACT

Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of Escherichia coli across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB. Due to feedback regulation of the fatty acid pathway, PlsB activity also indirectly controls synthesis of lipopolysaccharide, a major component of the outer membrane synthesized from a fatty acid synthesis intermediate. Surprisingly, concentrations of the enzyme that catalyzes the committed step of lipopolysaccharide synthesis (LpxC) do not differ across steady-state growth conditions, suggesting that steady-state lipopolysaccharide synthesis is modulated primarily via indirect control by PlsB. In contrast to steady-state regulation, we found that responses to environmental perturbations are triggered directly via changes in acetyl coenzyme A (acetyl-CoA) concentrations, which enable rapid adaptation. Adaptations are further modulated by ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong reliance of the membrane synthesis pathway upon posttranslational regulation ensures both the reliability and the responsiveness of membrane synthesis.IMPORTANCE How do bacterial cells grow without breaking their membranes? Although the biochemistry of fatty acid and membrane synthesis is well known, how membrane synthesis is balanced with growth and metabolism has remained unclear. This is partly due to the many control points that have been discovered within the membrane synthesis pathways. By precisely establishing the contributions of individual pathway enzymes, our results simplify the model of membrane biogenesis in the model bacterial species Escherichia coli Specifically, we found that allosteric control of a single enzyme, PlsB, is sufficient to balance growth with membrane synthesis and to ensure that growing E. coli cells produce sufficient membrane. Identifying the signals that activate and deactivate PlsB will resolve the issue of how membrane synthesis is synchronized with growth.


Subject(s)
Acetyltransferases/metabolism , Cell Membrane/metabolism , Escherichia coli/growth & development , Escherichia coli/genetics , Phospholipids/biosynthesis , Acetyltransferases/genetics , Biosynthetic Pathways , Lipopolysaccharides/biosynthesis , Mass Spectrometry , Protein Processing, Post-Translational
4.
PLoS Med ; 15(9): e1002655, 2018 09.
Article in English | MEDLINE | ID: mdl-30265679

ABSTRACT

BACKGROUND: Intravaginal rings (IVRs) for HIV pre-exposure prophylaxis (PrEP) theoretically overcome some adherence concerns associated with frequent dosing that can occur with oral or vaginal film/gel regimens. An innovative pod-IVR, composed of an elastomer scaffold that can hold up to 10 polymer-coated drug cores (or "pods"), is distinct from other IVR designs as drug release from each pod can be controlled independently. A pod-IVR has been developed for the delivery of tenofovir (TFV) disoproxil fumarate (TDF) in combination with emtricitabine (FTC), as daily oral TDF-FTC is the only Food and Drug Administration (FDA)-approved regimen for HIV PrEP. A triple combination IVR building on this platform and delivering TDF-FTC along with the antiretroviral (ARV) agent maraviroc (MVC) also is under development. METHODOLOGY AND FINDINGS: This pilot Phase I trial conducted between June 23, 2015, and July 15, 2016, evaluated the safety, pharmacokinetics (PKs), and acceptability of pod-IVRs delivering 3 different ARV regimens: 1) TDF only, 2) TDF-FTC, and 3) TDF-FTC-MVC over 7 d. The crossover, open-label portion of the trial (N = 6) consisted of 7 d of continuous TDF pod-IVR use, a wash-out phase, and 7 d of continuous TDF-FTC pod-IVR use. After a 3-mo pause to evaluate safety and PK of the TDF and TDF-FTC pod-IVRs, TDF-FTC-MVC pod-IVRs (N = 6) were evaluated over 7 d of continuous use. Safety was assessed by adverse events (AEs), colposcopy, and culture-independent analysis of the vaginal microbiome (VMB). Drug and drug metabolite concentrations in plasma, cervicovaginal fluids (CVFs), cervicovaginal lavages (CVLs), and vaginal tissue (VT) biopsies were determined via liquid chromatographic-tandem mass spectrometry (LC-MS/MS). Perceptibility and acceptability were assessed by surveys and interviews. Median participant age was as follows: TDF/TDF-FTC group, 26 y (range 24-35 y), 2 White, 2 Hispanic, and 2 African American; TDF-FTC-MVC group, 24.5 y (range 21-41 y), 3 White, 1 Hispanic, and 2 African American. Reported acceptability was high for all 3 products, and pod-IVR use was confirmed by residual drug levels in used IVRs. There were no serious adverse events (SAEs) during the study. There were 26 AEs reported during TDF/TDF-FTC IVR use (itching, discharge, discomfort), with no differences between TDF alone or in combination with FTC observed. In the TDF-FTC-MVC IVR group, there were 12 AEs (itching, discharge, discomfort) during IVR use regardless of attribution to study product. No epithelial disruption/thinning was seen by colposcopy, and no systematic VMB shifts were observed. Median (IQR) tenofovir diphosphate (TFV-DP) tissue concentrations of 303 (277-938) fmol/10(6) cells (TDF), 289 (110-603) fmol/10(6) cells (TDF-FTC), and 302 (177.1-823.8) fmol/10(6) cells (TDF-FTC-MVC) were sustained for 7 d, exceeding theoretical target concentrations for vaginal HIV prevention. The study's main limitations include the small sample size, short duration (7 d versus 28 d), and the lack of FTC triphosphate measurements in VT biopsies. CONCLUSIONS: An innovative pod-IVR delivery device with 3 different formulations delivering different regimens of ARV drugs vaginally appeared to be safe and acceptable and provided drug concentrations in CVFs and tissues exceeding concentrations achieved by highly protective oral dosing, suggesting that efficacy for vaginal HIV PrEP is achievable. These results show that an alternate, more adherence-independent, longer-acting prevention device based on the only FDA-approved PrEP combination regimen can be advanced to safety and efficacy testing. TRIAL REGISTRATION: ClinicalTrials.gov NCT02431273.


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/prevention & control , HIV-1 , Pre-Exposure Prophylaxis/methods , Administration, Intravaginal , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , Contraceptive Devices, Female , Cross-Over Studies , Drug Compounding , Drug Delivery Systems , Emtricitabine/administration & dosage , Emtricitabine/adverse effects , Emtricitabine/pharmacokinetics , Female , Humans , Maraviroc/administration & dosage , Maraviroc/adverse effects , Maraviroc/pharmacokinetics , Patient Satisfaction , Tenofovir/administration & dosage , Tenofovir/adverse effects , Tenofovir/pharmacokinetics , Young Adult
5.
PLoS One ; 12(10): e0185946, 2017.
Article in English | MEDLINE | ID: mdl-28982161

ABSTRACT

Globally, women bear an uneven burden for sexual HIV acquisition. Results from two clinical trials evaluating intravaginal rings (IVRs) delivering the antiretroviral agent dapivirine have shown that protection from HIV infection can be achieved with this modality, but high adherence is essential. Multipurpose prevention technologies (MPTs) can potentially increase product adherence by offering protection against multiple vaginally transmitted infections and unintended pregnancy. Here we describe a coitally independent, long-acting pod-IVR MPT that could potentially prevent HIV and HSV infection as well as unintended pregnancy. The pharmacokinetics of MPT pod-IVRs delivering tenofovir alafenamide hemifumarate (TAF2) to prevent HIV, acyclovir (ACV) to prevent HSV, and etonogestrel (ENG) in combination with ethinyl estradiol (EE), FDA-approved hormonal contraceptives, were evaluated in pigtailed macaques (N = 6) over 35 days. Pod IVRs were exchanged at 14 days with the only modification being lower ENG release rates in the second IVR. Plasma progesterone was monitored weekly to determine the effect of ENG/EE on menstrual cycle. The mean in vivo release rates (mg d-1) for the two formulations over 30 days ranged as follows: TAF2 0.35-0.40; ACV 0.56-0.70; EE 0.03-0.08; ENG (high releasing) 0.63; and ENG (low releasing) 0.05. Mean peak progesterone levels were 4.4 ± 1.8 ng mL-1 prior to IVR insertion and 0.075 ± 0.064 ng mL-1 for 5 weeks after insertion, suggesting that systemic EE/ENG levels were sufficient to suppress menstruation. The TAF2 and ACV release rates and resulting vaginal tissue drug concentrations (medians: TFV, 2.4 ng mg-1; ACV, 0.2 ng mg-1) may be sufficient to protect against HIV and HSV infection, respectively. This proof of principle study demonstrates that MPT-pod IVRs could serve as a potent biomedical prevention tool to protect women's sexual and reproductive health and may increase adherence to HIV PrEP even among younger high-risk populations.


Subject(s)
Antiviral Agents/administration & dosage , Contraceptive Devices, Female , HIV Infections/prevention & control , Herpes Genitalis/prevention & control , Pregnancy, Unplanned , Administration, Intravaginal , Animals , Antiviral Agents/pharmacokinetics , Female , Humans , Macaca nemestrina , Pregnancy
6.
PLoS One ; 11(6): e0157061, 2016.
Article in English | MEDLINE | ID: mdl-27275923

ABSTRACT

Topical preexposure prophylaxis (PrEP) against HIV has been marginally successful in recent clinical trials with low adherence rates being a primary factor for failure. Controlled, sustained release of antiretroviral (ARV) drugs may help overcome these low adherence rates if the product is protective for extended periods of time. The oral combination of tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) is currently the only FDA-approved ARV drug for HIV PrEP. A novel pod-intravaginal ring (IVR) delivering TDF and FTC at independently controlled rates was evaluated for efficacy at preventing SHIV162p3 infection in a rigorous, repeat low-dose vaginal exposure model using normally cycling female pigtailed macaques. Six macaques received pod-IVRs containing TDF (65 mg) and FTC (68 mg) every two weeks, and weekly vaginal exposures to 50 TCID50 of SHIV162p3 began one week after the first pod-IVR insertion. All pod-IVR-treated macaques were fully protected throughout the study (P = 0.0002, Log-rank test), whereas all control animals became infected with a median of 4 exposures to infection. The topical, sustained release of TDF and FTC from the pod-IVR maintained protective drug levels in macaques over four months of virus exposures. This novel and versatile delivery system has the capacity to deliver and maintain protective levels of multiple drugs and the protection observed here warrants clinical evaluation of this pod-IVR design.


Subject(s)
Contraceptive Devices, Female , Emtricitabine/pharmacology , Retroviruses, Simian , Simian Acquired Immunodeficiency Syndrome/prevention & control , Tenofovir/pharmacology , Administration, Intravaginal , Administration, Topical , Animals , Female , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/transmission
7.
Antimicrob Agents Chemother ; 60(6): 3759-66, 2016 06.
Article in English | MEDLINE | ID: mdl-27067321

ABSTRACT

Preexposure prophylaxis (PrEP) against HIV using oral regimens based on the nucleoside reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF) has been effective to various degrees in multiple clinical trials, and the CCR5 receptor antagonist maraviroc (MVC) holds potential for complementary efficacy. The effectiveness of HIV PrEP is highly dependent on adherence. Incorporation of the TDF-MVC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described. The pharmacokinetics and preliminary local safety characteristics of a novel pod-IVR delivering a combination of TDF and MVC were evaluated in the ovine model. The device exhibited sustained release at controlled rates over the 28-day study and maintained steady-state drug levels in cervicovaginal fluids (CVFs). Dilution of CVFs during lavage sample collection was measured by ion chromatography using an inert tracer, allowing corrected drug concentrations to be measured for the first time. Median, steady-state drug levels in vaginal tissue homogenate were as follows: for tenofovir (TFV; in vivo hydrolysis product of TDF), 7.3 × 10(2) ng g(-1) (interquartile range [IQR], 3.0 × 10(2), 4.0 × 10(3)); for TFV diphosphate (TFV-DP; active metabolite of TFV), 1.8 × 10(4) fmol g(-1) (IQR, 1.5 × 10(4), 4.8 × 10(4)); and for MVC, 8.2 × 10(2) ng g(-1) (IQR, 4.7 × 10(2), 2.0 × 10(3)). No adverse events were observed. These findings, together with previous pod-IVR studies, have allowed several lead candidates to advance into clinical evaluation.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Cyclohexanes/pharmacokinetics , Delayed-Action Preparations/pharmacokinetics , HIV Infections/prevention & control , Tenofovir/pharmacokinetics , Triazoles/pharmacokinetics , Vagina/chemistry , Administration, Intravaginal , Animals , Contraceptive Devices, Female , Drug Combinations , Female , Humans , Maraviroc , Models, Animal , Primary Prevention , Sheep , Vagina/drug effects
8.
Antimicrob Agents Chemother ; 59(7): 3913-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25896688

ABSTRACT

Oral or topical daily administration of antiretroviral (ARV) drugs to HIV-1-negative individuals in vulnerable populations is a promising strategy for HIV-1 prevention. Adherence to the dosing regimen has emerged as a critical factor determining efficacy outcomes of clinical trials. Because adherence to therapy is inversely related to the dosing period, sustained release or long-acting ARV formulations hold significant promise for increasing the effectiveness of HIV-1 preexposure prophylaxis (PrEP) by reducing dosing frequency. A novel, subdermal implant delivering the potent prodrug tenofovir alafenamide (TAF) with controlled, sustained, zero-order (linear) release characteristics is described. A candidate device delivering TAF at 0.92 mg day(-1) in vitro was evaluated in beagle dogs over 40 days for pharmacokinetics and preliminary safety. No adverse events related to treatment with the test article were noted during the course of the study, and no significant, unusual abnormalities were observed. The implant maintained a low systemic exposure to TAF (median, 0.85 ng ml(-1); interquartile range [IQR], 0.60 to 1.50 ng ml(-1)) and tenofovir (TFV; median, 15.0 ng ml(-1); IQR, 8.8 to 23.3 ng ml(-1)), the product of in vivo TAF hydrolysis. High concentrations (median, 512 fmol/10(6) cells over the first 35 days) of the pharmacologically active metabolite, TFV diphosphate, were observed in peripheral blood mononuclear cells at levels over 30 times higher than those associated with HIV-1 PrEP efficacy in humans. Our report on the first sustained-release nucleoside reverse transcriptase inhibitor (NRTI) for systemic delivery demonstrates a successful proof of principle and holds significant promise as a candidate for HIV-1 prophylaxis in vulnerable populations.


Subject(s)
Adenine/analogs & derivatives , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , HIV Infections/prevention & control , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/therapeutic use , Adenine/administration & dosage , Adenine/pharmacokinetics , Adenine/therapeutic use , Alanine , Animals , Anti-HIV Agents/administration & dosage , Dogs , Drug Implants , Equipment Design , HIV-1/drug effects , Male , Monocytes/metabolism , Prodrugs , Reverse Transcriptase Inhibitors/administration & dosage , Tenofovir/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...