Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931763

ABSTRACT

Respiratory rate (RR) is a vital indicator for assessing the bodily functions and health status of patients. RR is a prominent parameter in the field of biomedical signal processing and is strongly associated with other vital signs such as blood pressure, heart rate, and heart rate variability. Various physiological signals, such as photoplethysmogram (PPG) signals, are used to extract respiratory information. RR is also estimated by detecting peak patterns and cycles in the signals through signal processing and deep-learning approaches. In this study, we propose an end-to-end RR estimation approach based on a third-generation artificial neural network model-spiking neural network. The proposed model employs PPG segments as inputs, and directly converts them into sequential spike events. This design aims to reduce information loss during the conversion of the input data into spike events. In addition, we use feedback-based integrate-and-fire neurons as the activation functions, which effectively transmit temporal information. The network is evaluated using the BIDMC respiratory dataset with three different window sizes (16, 32, and 64 s). The proposed model achieves mean absolute errors of 1.37 ± 0.04, 1.23 ± 0.03, and 1.15 ± 0.07 for the 16, 32, and 64 s window sizes, respectively. Furthermore, it demonstrates superior energy efficiency compared with other deep learning models. This study demonstrates the potential of the spiking neural networks for RR monitoring, offering a novel approach for RR estimation from the PPG signal.


Subject(s)
Neural Networks, Computer , Photoplethysmography , Respiratory Rate , Signal Processing, Computer-Assisted , Humans , Respiratory Rate/physiology , Photoplethysmography/methods , Heart Rate/physiology , Algorithms , Deep Learning
2.
Sensors (Basel) ; 23(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37631767

ABSTRACT

A spiking neural network (SNN) is a type of artificial neural network that operates based on discrete spikes to process timing information, similar to the manner in which the human brain processes real-world problems. In this paper, we propose a new spiking neural network (SNN) based on conventional, biologically plausible paradigms, such as the leaky integrate-and-fire model, spike timing-dependent plasticity, and the adaptive spiking threshold, by suggesting new biological models; that is, dynamic inhibition weight change, a synaptic wiring method, and Bayesian inference. The proposed network is designed for image recognition tasks, which are frequently used to evaluate the performance of conventional deep neural networks. To manifest the bio-realistic neural architecture, the learning is unsupervised, and the inhibition weight is dynamically changed; this, in turn, affects the synaptic wiring method based on Hebbian learning and the neuronal population. In the inference phase, Bayesian inference successfully classifies the input digits by counting the spikes from the responding neurons. The experimental results demonstrate that the proposed biological model ensures a performance improvement compared with other biologically plausible SNN models.


Subject(s)
Learning , Neurons , Humans , Bayes Theorem , Brain , Neural Networks, Computer
3.
Biomed Eng Lett ; 13(2): 197-207, 2023 May.
Article in English | MEDLINE | ID: mdl-37124113

ABSTRACT

Various biometrics such as the face, irises, and fingerprints, which can be obtained in a relatively simple way in modern society, are used in personal authentication systems to identify individuals. These biometric data are extracted from an individual's physiological data and yield high performance in identifying an individual using unique data patterns. Biometric identification is also used in portable devices such as mobile devices because it is more secure than cryptographic token-based authentication methods. However, physiological data could include personal health information such as arrhythmia related patterns in electrocardiogram (ECG) signals. To protect sensitive health information from hackers, the biomarkers of certain diseases or disorders that exist in ECG signals need to be hidden. Additionally, to implement the inference models for both arrhythmia detection and personal authentication in a mobile device, a lightweight model such as a multi-task deep learning model should be considered. This study demonstrates a multi-task neural network model that simultaneously identifies an individual's ECG and arrhythmia patterns using a small network. Finally, the computational efficiency and model size of the single-task and multi-task models were compared based on the number of parameters. Although the multi-task model has 20,000 fewer parameters than the single-task model, they yielded similar performance, which demonstrates the efficient structure of the multi-task model.

4.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772269

ABSTRACT

In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.


Subject(s)
Algorithms , Wearable Electronic Devices , Humans , Bayes Theorem , Intelligence , Electrocardiography/methods
5.
Sensors (Basel) ; 21(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668148

ABSTRACT

Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5-5.33%) and improvement of the true acceptance rate (70.05-87.61%) over five days.


Subject(s)
Biometric Identification , Electrocardiography , Support Vector Machine , Humans
SELECTION OF CITATIONS
SEARCH DETAIL