Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
BMC Med Genomics ; 17(1): 36, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279119

ABSTRACT

Idiopathic congenital nystagmus (ICN) manifests as involuntary and periodic eye movements. To identify the genetic defect associated with X-linked ICN, Whole Exome Sequencing (WES) was conducted in two affected families. We identified two frameshift mutations in FRMD7, c.1492dupT/p.(Y498Lfs*15) and c.1616delG/p.(R539Kfs*2). Plasmids harboring the mutated genes and qPCR analysis revealed mRNA stability, evading degradation via the NMD pathway, and corroborated truncated protein production via Western-blot analysis. Notably, both truncated proteins were degraded through the proteasomal (ubiquitination) pathway, suggesting potential therapeutic avenues targeting this pathway for similar mutations. Moreover, we conducted a comprehensive analysis, summarizing 140 mutations within the FRMD7 gene. Our findings highlight the FERM and FA structural domains as mutation-prone regions. Interestingly, exons 9 and 12 are the most mutated regions, but 90% (28/31) mutations in exon 9 are missense while 84% (21/25) mutations in exon 12 are frameshift. A predominant occurrence of shift code mutations was observed in exons 11 and 12, possibly associated with the localization of premature termination codons (PTCs), leading to the generation of deleterious truncated proteins. Additionally, our conjecture suggests that the loss of FRMD7 protein function might not solely drive pathology; rather, the emergence of aberrant protein function could be pivotal in nystagmus etiology. We propose a dependence of FRMD7 protein normal function primarily on its anterior domain. Future investigations are warranted to validate this hypothesis.


Subject(s)
Frameshift Mutation , Nystagmus, Congenital , Humans , Nystagmus, Congenital/genetics , Base Sequence , Membrane Proteins/genetics , Cytoskeletal Proteins/genetics , Pedigree , DNA Mutational Analysis , Mutation
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1575-1587, 2024 03.
Article in English | MEDLINE | ID: mdl-37676495

ABSTRACT

Apoptosis and autophagy have been shown to act cooperatively and antagonistically in self-elimination process. On the one side, apoptosis and autophagy can act as partners to induce cell death in a coordinated or cooperative manner; on the flip side, autophagy acts as an antagonist to block apoptotic cell death by promoting cell survival. Our previous research indicated that trillin could induce apoptosis of PLC/PRF/5 cells, but the effects of trillin on autophagy as well as its functional relationship to apoptosis have not been elucidated. Here, the running study aims to investigate the function and molecular mechanism of trillin on autophagy with hepatocellular carcinoma (HCC) cells. The objective of this study is to investigate the molecular mechanism of trillin on autophagy in HCC cells. Protein levels of autophagy markers beclin1, LC3B, and p62 were detected by western blotting. 6-Hydroxyflavone and stattic were used to test the role of trillin regulation of autophagy via serine threonine kinase (AKT)/extracellular-regulated protein kinases (ERK) 1/2/mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Flow cytometry was used to detect caspase 3 activity and apoptosis in PLC/PRF/5 cells treated with trillin for 24 h with or without rapamycin, stattic, and 6-hydroxyflavone. The protein level of autophagy marker beclin1 was decreased, whilst the protein level of p62 was significantly increased by trillin treatment, indicating trillin treatment led to inhibition of autophagy in HCC cells. Trillin treatment could reduce the protein levels of p-AKT and p-ERK1/2, but enhance the protein levels of mTOR and p-mTOR, suggesting that trillin could inhibit AKT/ERK rather than mTOR. The AKT/ERK activator 6-hydroxyflavone could reverse the loss of AKT and ERK1/2 phosphorylation induced by trillin, implying that trillin impairs autophagy through activated mTOR rather than AKT/ERK. STAT3 and p-STAT3 were significantly upregulated by the trillin treatment with an increase in dose from 0 to 50 µM, suggesting that autophagy inhibition is mediated by trillin via activation of STAT3 signaling. The STAT3 inhibitor stattic significantly reversed the increased STAT3 phosphorylation at tyrosine 705 induced by trillin. The mTOR signaling inhibitor rapamycin reversed the trillin-induced mTOR phosphorylation enhancement but exerted no effects on total mTOR levels, suggesting trillin treatment led to inhibition of autophagy in HCC cells through activating mTOR/STAT3 pathway. Furthermore, caspase 3 activities and the total rate of apoptosis were increased by trillin treatment, which was reversed by rapamycin, stattic, and 6-hydroxyflavone, proving that trillin promotes apoptosis via activation of mTOR/STAT3 signaling. Trillin induced autophagy inhibition and promoted apoptosis in PLC/PRF/5 cells via the activation of mTOR/STAT3 signaling. Trillin has the potential to be a viable therapeutic option for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Cyclic S-Oxides , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Sirolimus/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Beclin-1/metabolism , Beclin-1/pharmacology , STAT3 Transcription Factor/metabolism , Caspase 3/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy
3.
Biosens Bioelectron ; 238: 115548, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37542979

ABSTRACT

Circulating tumor DNA (ctDNA) was short and rare, making the detection performance of the current targeted sequencing methods unsatisfying. We developed the One-PrimER Amplification (OPERA) system and examined its performance in detecting mutations of low variant allelic frequency (VAF) in various samples with short-sized DNA fragments. In cell line-derived samples containing sonication-sheared DNA fragments with 50-150 bp, OPERA was capable of detecting mutations as low as 0.0025% VAF, while CAPP-Seq only detected mutations of >0.03% VAF. Both single nucleotide variant and insertion/deletion can be detected by OPERA. In synthetic fragments as short as 80 bp with low VAF (0.03%-0.1%), the detection sensitivity of OPERA was significantly higher compared to that of droplet digital polymerase chain reaction. The error rate was 5.9×10-5 errors per base after de-duplication in plasma samples collected from healthy volunteers. By suppressing "single-strand errors", the error rate can be further lowered by >5 folds in EGFR T790M hotspot. In plasma samples collected from lung cancer patients, OPERA detected mutations in 57.1% stage I patients with 100% specificity and achieved a sensitivity of 30.0% in patients with tumor volume of less than 1 cm3. OPERA can effectively detect mutations in rare and highly-fragmented DNA.


Subject(s)
Biosensing Techniques , Cell-Free Nucleic Acids , Circulating Tumor DNA , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing
4.
Carbohydr Polym ; 319: 121193, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567698

ABSTRACT

Bacterial infections are among the leading causes of delayed wound healing. At present, a series of antibacterial materials, such as antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), have been used to fabricate antibacterial wound dressings. However, their translational potential is limited owing to their poor biocompatibility. ε-Polylysine (ε-PL) is a natural macromolecule with excellent biocompatibility and broad-spectrum antibacterial activity. Herein, ε-PL was incorporated into a cellulose/γ-polyglutamic acid (γ-PGA) composite hydrogel to form a novel double-network hydrogel termed as CGLH. The elastic modulus of CGLH increased from 0.097 ± 0.015 MPa to 0.441 ± 0.096 MPa, and the equilibrium swelling ratio increased from 382.7 ± 24.3 % to 611.2 ± 8.6 %. Several preclinical models were used to investigate the translational potential of this hydrogel. CGLH exhibited good biocompatibility and antibacterial activity, which promoted the healing of infected and critical-size wounds within 12 days. CGLH had positive effects on collagen synthesis, vascularization and cell proliferation. As a result, this study not only provided an effective alternative for wound healing but also proposed a double-network strategy for creating biocompatible and antibacterial biomaterials.

5.
Chem Biol Drug Des ; 102(6): 1409-1420, 2023 12.
Article in English | MEDLINE | ID: mdl-37599208

ABSTRACT

Diabetic nephropathy is a major complication of diabetes mellitus and is related to dysfunction of renal cells. Hederagenin is a triterpenoid saponin from some Chinese herbs with anti-inflammatory and anti-diabetic activities. However, its role in diabetic nephropathy progression is still obscure. This study aimed to explore the effects of hederagenin on renal cell dysfunction in vitro. Human renal mesangial cells (HRMCs) and human renal proximal tubular epithelial cells (HRPTEpiCs) were cultured under high glucose (HG) conditions to mimic diabetic nephropathy-like injury. Cell proliferation was evaluated by CCK-8. mRNA and protein levels were determined by qRT-PCR and western blotting, respectively. The secretion levels of fibrosis-related biomarkers were analyzed by ELISA. Results showed that hederagenin reduced HG-induced proliferation increase in HRMCs and HRPTEpiCs. Hederagenin attenuated HG-induced increase in mRNA and protein expression of NLRP3, ASC, and IL-1ß. Hederagenin also suppressed HG-induced increase in mRNA and secretion levels of FN, Col. IV, PAI-1, and TGF-ß1. NLRP3 inhibitor MCC950 attenuated HG-induced fibrosis of renal cells, and its activator nigericin reversed the suppressive effect of hederagenin on HG-induced fibrosis. Bioinformatics analysis predicted cathepsin B (CTSB) as a target of hederagenin to modulate NOD-like receptor (NLR) pathway. Hederagenin decreased CTSB level, and CTSB overexpression reversed the suppressive effect of hederagenin on HG-induced NLRP3 inflammasome activation and fibrosis in HRMCs and HRPTEpiCs. In conclusion, hederagenin attenuates HG-induced fibrosis of renal cells by inhibiting NLRP3 inflammasome activation via reducing CTSB expression, indicating a therapeutic potential of hederagenin in diabetic nephropathy.


Subject(s)
Diabetic Nephropathies , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Cathepsin B , Fibrosis , Glucose , RNA, Messenger
6.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298914

ABSTRACT

Traditional organic amines exhibit inferior desorption performance and high regeneration energy consumption. The implementation of solid acid catalysts presents an efficacious approach to mitigate regeneration energy consumption. Thus, investigating high-performance solid acid catalysts holds paramount importance for the advancement and implementation of carbon capture technology. This study synthesized two Lewis acid catalysts via an ultrasonic-assisted precipitation method. A comparative analysis of the catalytic desorption properties was conducted, encompassing these two Lewis acid catalysts and three precursor catalysts. The results demonstrated that the CeO2-γ-Al2O3 catalyst demonstrated superior catalytic desorption performance. Within the desorption temperature range of 90 to 110 °C, the average desorption rate of BZA-AEP catalyzed by the CeO2-γ-Al2O3 catalyst was 87 to 354% greater compared to the desorption rate in the absence of the catalyst, and the desorption temperature can be reduced by approximately 10 °C. A comprehensive analysis of the catalytic desorption mechanism of the CeO2-γ-Al2O3 catalyst was conducted, and indicated that the synergistic effect of CeO2-γ-Al2O3 conferred a potent catalytic influence throughout the entire desorption process, spanning from the rich solution to the lean solution.


Subject(s)
Aluminum Oxide , Cerium , Carbon Dioxide , Lewis Acids , Catalysis
7.
Front Genet ; 14: 1151645, 2023.
Article in English | MEDLINE | ID: mdl-37035743

ABSTRACT

Coptis chinensis Franch. (Huanglian in Chinese) is an important economic crop with medicinal value. Its rhizome has been used as a traditional herbal medicine for thousands of years in Asia. Protoberberine alkaloids, as the main bioactive component of Coptis chinensis, have a series of pharmacological activities. However, the protoberberine alkaloids content of C. chinensis is relatively low. Understanding the molecular mechanisms affecting the transcriptional regulation of protoberberine alkaloids would be crucial to increase their production via metabolic engineering. WRKY, one of the largest plant-specific gene families, regulates plant defense responses via the biosynthesis of specialized metabolites such as alkaloids. Totally, 41 WRKY transcription factors (TFs) related to protoberberine alkaloid biosynthesis were identified in the C. chinensis genome and classified into three groups based on phylogenetic and conserved motif analyses. Three WRKY genes (CcWRKY7, CcWRKY29, and CcWRKY32) may regulate protoberberine alkaloid biosynthesis, as suggested by gene-specific expression patterns, metabolic pathways, phylogenetic, and dual-luciferase analysis. Furthermore, the CcWRKY7, CcWRKY29, and CcWRKY32 proteins were specifically detected in the nucleus via subcellular localization. This study provides a basis for understanding the regulatory mechanisms of protoberberine alkaloid biosynthesis and valuable information for breeding C. chinensis varieties.

8.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985632

ABSTRACT

To find suitable absorbents for ship-based carbon capture, the absorption and desorption properties of four mixed aqueous amines based on BZA were investigated, and the results indicated that BZA-AEP had the best absorption and desorption performance. Then, the absorption and desorption properties of different mole ratios of BZA-AEP were tested. The results showed that the average CO2 absorption rate had the highest value at the mole ratio of BZA to AEP of three. The average CO2 desorption rate had the maximum value at the mole ratio of BZA to AEP of one. Three fitted models of the absorption and desorption performance of BZA-AEP based on the test data were obtained. The p-values of all three models were less than 0.0001. Considering the performance and material cost, the BZA-AEP mole ratio of 1.5 is more appropriate for ship carbon capture. Compared with MEA, the average CO2 absorption rate increased by 48%, the CO2 desorption capacity increased by 120%, and the average CO2 desorption rate increased by 161%.

9.
Diabetol Metab Syndr ; 15(1): 18, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788623

ABSTRACT

BACKGROUND: The prevalence of impaired glucose tolerance and diabetes is much higher in people with cirrhosis than that in the general population. However, there are inadequate concrete guidelines for the management of diabetes in these patients, particularly in the early stage. Bile aids (BAs) have been found to exert hormone-like functions in the control of lipid and glucose metabolism. We studied the effect of ursodeoxycholic acid (UDCA) on glucose levels in rats with cirrhosis induced by bile duct ligation (BDL). METHODS: SD rats were divided into three groups: sham operation (Group A); BDL (Group B), and UDCA plus BDL (Group C). After 4 weeks, oral glucose tolerance tests were performed. Serum biochemical parameters and the levels of glucose, insulin, and glucagon-like peptide 1 (GLP-1) were measured. Histopathology of the liver and islet was observed. The gene expression of cholesterol 7α-hydroylase (CYP7A1), microsomal oxysterol 7a-hydroxylase (CYP7B1) in the liver, and Takeda G-protein-coupled receptor-5 (TGR5) in the intestine was determined by real-time PCR. RESULTS: Compared with Group A, fasting glucose and 1-h and 2-h postprandial glucose levels increased slightly (all P > 0.05), 2-h postprandial insulin levels increased significantly (P < 0.05), 15 min postprandial GLP-1 levels decreased (P < 0.05) in Group B. Compared with Group B, fasting glucose and 1-h postprandial glucose levels decreased (all P < 0.05), 2-h postprandial insulin levels decreased (P < 0.01), and 15 min postprandial GLP-1 levels increased (P < 0.05) in Group C. After UDCA intervention, liver fibrosis induced by BDL was alleviated, and the islet areas were increased (P < 0.05). Compared with Group A, the mRNA expression of CYP7A1 and CYP7B1 in the liver increased, and the mRNA expression of TGR5 in the intestine decreased in Group B (all P < 0.05). Compared with Group B, the mRNA expression of CYP7A1 and CYP7B1 in the liver decreased, and TGR5 in the intestine increased in Group C (P < 0.05). CONCLUSIONS: After 4 weeks of BDL, the rats developed liver fibrosis and abnormal glucose metabolism. UDCA administration improved liver fibrosis, increased islet area, decreased glucose levels, inhibited genes in BA synthesis, enhanced TGR5 gene expression in the intestine, and further improved islet function.

10.
J Anat ; 242(5): 796-805, 2023 05.
Article in English | MEDLINE | ID: mdl-36584359

ABSTRACT

Toldt's fascia has always been described as a fusion fascia formed by two layers of visceral peritoneum when the mesentery attaches to the posterior abdominal wall. However, there is still no consensus about the mesentery and its surrounding fascia based on the current anatomic theories. This study aimed to determine the anatomical structures of the abdomen and provide a correct surgical plane for mesenteric-based surgery. Surgical videos of 121 patients who underwent laparoscopic operations of the digestive tract were reviewed to identify and compare the anatomical structures of the mesentery and associated fascia. Twenty-one postoperative specimens were stained with hematoxylin and eosin to indicate the histological appearance of the mesentery and its surrounding fascia. Furthermore, dynamic models had been established to explain the formation mechanism of the associated histological structures in different regions during the progression of mesenteric attachment. The fasciae surrounding the mesentery, including the submesothelial connective tissue, the subserosal connective tissue, Toldt's fascia, and "angel hair," have the same histological characteristic to extraperitoneal fascia. The general anatomical structure of the abdomen can be divided into three layers (abdominal wall, urogenital system, and digestive system) and two interlayers (transversalis fascia and extraperitoneal fascia). The extraperitoneal fascia surrounds the entire digestive system and is the natural layer separating adjacent structures from each other. Typical histological structures in the regions of posterior attachment include the fascia propria of the mesentery, mesofascial plane, extraperitoneal fascia, retrofascial plane, and anterior renal fascia. The urogenital system is surrounded by similar histological structures. There is no fusion fascia in the abdomen due to retreat of the visceral peritoneum, and all of the fasciae surrounding the mesentery are extraperitoneal fascia. This study demonstrates that the typical histological structures in the regions of attachment and mesofascial plane are the correct anatomic interface for mesenteric-based surgery.


Subject(s)
Abdominal Wall , Humans , Abdominal Wall/surgery , Mesentery/surgery , Mesentery/pathology , Fascia/pathology , Connective Tissue
11.
Environ Sci Pollut Res Int ; 30(13): 37570-37578, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36572774

ABSTRACT

This study explores the synergistic removal effect of various schemes based on demisters on boiler flue gas dust on a pilot-scale experimental bench. The results show that the dust removal efficiency is 28.43-51.30% when demisters are put into operation alone; the larger the inlet dust concentration of demisters is, the higher the dust removal efficiency will be; but it still cannot reach the 10 mg/Nm3 ultra-low emission standard. The dust removal efficiency is 93.13% when wet electro-static precipitator and demisters are put into operation simultaneously. Furthermore, the outlet dust concentration is lower than 5 mg/Nm3, and the dust removal efficiency of the demisters themselves increases to 67.28%, which has shown a significant improvement compared with operation alone. The dust removal efficiency is 70.98-78.37% when the water-washing layer and demisters are put into operation simultaneously. Moreover, the outlet dust concentration reaches the standard of 10 mg/Nm3 when the liquid-gas ratio (L/G) is more than 3.5. This research shows that when the inlet dust concentration is ≤ 35 mg/Nm3, the method of "water-washing layer + demisters" can be used as an equivalent alternative to the wet electro-static precipitator when L/G ≥ 3.5, which has reference value for reducing the construction cost of ultra-low emission reformation.


Subject(s)
Air Pollutants , Dust , Air Pollutants/analysis , Pilot Projects , Water
12.
World J Clin Cases ; 10(33): 12104-12115, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36483797

ABSTRACT

BACKGROUND: The therapeutic effects of a combination of Chinese medicines called Baihedihuang decoction (BD) have been clinically verified, although its molecular targets in breast cancer related anxiety remain unknown. AIM: To explore the molecular mechanisms of BD for breast cancer related anxiety treatment. METHODS: We used the Traditional Chinese Medicine Systems Pharmacology database to screen the active ingredients and potential targets of BD, and constructed the "drug-ingredient-target" network map with the help of Cytoscape 3.8 software. Also, we used the Online Mendelian Inheritance in Man, DrugBank, and Gencards databases to collect the disease targets of breast cancer related anxiety, and used the STRING platform to perform protein interaction analysis and construct the protein-protein interaction network. Metascape platform was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of key targets. Molecular docking technology was used to verify the drug component/target disease network. RESULTS: We screened 16 active ingredients of BD for breast cancer related anxiety, with 113 target proteins. There are 931 disease targets of breast cancer related anxiety, and finally, 43 key targets and 305 Kyoto Encyclopedia of Genes and Genomes pathways were generated. The main active ingredients of BD for breast cancer related anxiety are verbascoside, ß-sitosterol, stigmasterol, catalpol, etc. CDK2, TP53, HTR2A, ESR1, etc. are its key targets, and the main involved signaling pathways may include neuroactive ligand-receptor interaction pathway, 5-hydroxytryptaminergic synapse, P53 signaling pathway, cGMP-PKG signaling pathway, the cAMP signaling pathway, etc. Finally, molecular docking was performed with Vina software to validate the key active ingredients in BD with the selected key action targets. The molecular docking results showed that verbascoside, ß-sitosterol, stigmasterol and CDK2 could stably bind and interact through amino acid residues SER249, ARG260, PRO228, ALA282, SER276, LYS273, ASN272, etc. CONCLUSION: The therapeutic effect of BD for breast cancer related anxiety is multi-level, multi-target, and multi-pathway. The findings of this study provide ideas and basis for further research.

13.
Article in English | MEDLINE | ID: mdl-36429456

ABSTRACT

In this work, a series of CuCo2O4-x (x = N, A and C) catalysts were synthesized using different metal salt precursors by urea hydrothermal method for catalytic soot combustion. The effect of CuCo2O4-x catalysts on soot conversion and CO2 selectivity in both loose and tight contact mode was investigated. The CuCo2O4-N catalyst exhibited outstanding catalytic activity with the characteristic temperatures (T10, T50 and T90) of 451 °C, 520 °C and 558 °C, respectively, while the CO2 selectivity reached 98.8% during the reaction. With the addition of NO, the soot combustion was further accelerated over all catalysts. Compared with the loose contact mode, the soot conversion was improved in the tight contact mode. The CuCo2O4-N catalysts showed better textural properties compared to the CuCo2O4-A and CuCo2O4-C, such as higher specific surface areas and pore volumes. The XRD results confirmed that the formation of a CuCo2O4 crystal phase in all catalysts. However, the CuO crystal phase only presented in CuCo2O4-N and CuCo2O4-A. The relative contents of Cu2+, Co3+ and Oads on the surface of CuCo2O4-x (x = N, A and C) catalysts were analyzed by XPS. The CuCo2O4-N catalyst displayed the highest relative content of Cu2+, Co3+ and Oads. The activity of catalytic soot combustion showed a good correlation with the order of the relative contents of Cu2+, Co3+ and Oads. Additionally, the CuCo2O4-N catalyst exhibited lower reduction temperature compared to the CuCo2O4-A and CuCo2O4-C. The cycle tests clarified that the copper-cobalt spinel catalyst obtained good stability. In addition, based on the Mars-van Krevelen mechanism, the process of catalytic soot combustion was described combined with the electron transfer process and the role of oxygen species over CuCo2O4 spinel catalysts.

14.
Front Genet ; 13: 1005271, 2022.
Article in English | MEDLINE | ID: mdl-36246607

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a very high fatality rate. Our goal in this study is to find a reliable lipid metabolism-related signature associated with prognostic significance for HCC. In this study, HCC lipid metabolism-related molecular subtype analysis was conducted based on the 243 lipid metabolism genes collected from the Molecular Signatures Database. Several significant disparities in prognosis, clinicopathological characteristics, and immune and ferroptosis-related status were found across the three subtypes, especially between C1 and C3 subgroups. Differential expression analysis yielded 57 differentially expressed genes (DEGs) between C1 and C3 subtypes. GO and KEGG analysis was employed for functional annotation. Three of 21 prognostic DEGs (CXCL8, SLC10A1, and ADH4) were finally selected through machine-learning-based discovery and validation strategy. The risk score = (0.103) × expression value of CXCL8 + (-0.0333) × expression value of SLC10A1 + (-0.0812) × expression value of ADH4. We used these three to construct a HCC prognostic risk model, which stratified the patients of the validation cohort into two risk subtypes with significantly different overall survival. Our work provides possible significance of the lipid metabolism-associated model in stratifying patient prognosis and its feasibility to guide therapeutic selection.

15.
Front Pharmacol ; 13: 930958, 2022.
Article in English | MEDLINE | ID: mdl-35899120

ABSTRACT

Ferritinophagy is associated with tumor occurrence, development, and therapy effects. Ferritinophagy and ferroptosis are regulated by iron metabolism and are closely connected. LC3 protein is a key protein in autophagy. Following the binding of NCOA4 to FTH1, it links to LC3Ⅱ in lysosomes, a symbol of ferritinophagy. A ferritinophagy's inducer is likely to open new avenues for anticancer medication research and development. In this study, we discovered that caryophyllene oxide has a substantial inhibitory effect on HCCLM3 and HUH7 cells, by regulating the level of cellular oxidative stress, and the levels of autophagy and iron metabolism in HCCLM3 and HUH7 cells, leading to a ferritinophagy-related phenomenon. Furthermore, the results of T-AOC, DPPH free radical scavenging rate, and hydroxyl radical inhibition indicated that caryophyllene oxide can inhibit cell anti-oxidation. The examination of the ferritinophagy-related process revealed that caryophyllene oxide promotes the production and accumulation of intracellular reactive oxygen species and lipid peroxidation. NCOA4, FTH1, and LC3Ⅱ were found to be targeted regulators of caryophyllene oxide. Caryophyllene oxide regulated NCOA4, LC3 Ⅱ, and FTH1 to promote ferritinophagy. In vivo, we discovered that caryophyllene oxide can lower tumor volume, significantly improve NCOA4 and LC3 protein levels in tumor tissue, and raise Fe2+ and malondialdehyde levels in serum. The compound can also reduce NRF2, GPX4, HO-1, and FTH1 expression levels. The reduction in the expression levels of NRF2, GPX4, HO-1, and FTH1 by caryophyllene oxide also inhibited GSH and hydroxyl radical's inhibitory capacities in serum, and promoted iron deposition in tumor tissue resulting in the inhibition of tumor growth. In summary, our study revealed that caryophyllene oxide mostly kills liver cancer cells through ferritinophagy-mediated ferroptosis mechanisms. In conclusion, caryophyllene oxide may be used as a ferritinophagy activator in the field of antitumor drug research and development.

16.
Dis Markers ; 2022: 8602068, 2022.
Article in English | MEDLINE | ID: mdl-35726234

ABSTRACT

Glioblastoma multiforme (GBM) is a prevalent intracranial brain tumor associated with a high rate of recurrence and treatment difficulty. The prediction of novel molecular biomarkers through bioinformatics analysis may provide new clues into early detection and eventual treatment of GBM. Here, we used data from the GTEx and TCGA databases to identify 1923 differentially expressed genes (DEGs). GO and KEGG analyses indicated that DEGs were significantly enriched in immune response and coronavirus disease-COVID-19 pathways. Survival analyses revealed a significant correlation between high expression of C1R, CCL2, and TNFRSF1A in the coronavirus disease-COVID-19 pathway and the poor survival in GBM patients. Cell experiments indicated that the mRNA expression levels of C1R, CCL2, and TNFRSF1A in GBM cells were very high. Immune infiltration analysis revealed a significant difference in the proportion of immune cells in tumor and normal tissue, and the expression levels of C1R, CCL2, and TNFRSF1A were associated with immune cell infiltration of GBM. Additionally, the protein-protein interaction networks of C1R, CCL2, and TNFRSF1A involved a total of 65 nodes and 615 edges. These results suggest that C1R, CCL2, and TNFRSF1A may be used as molecular biomarkers of prognosis and immune infiltration in GBM patients in the future.


Subject(s)
Brain Neoplasms , COVID-19 , Chemokine CCL2 , Complement C1r , Glioblastoma , Receptors, Tumor Necrosis Factor, Type I , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , COVID-19/genetics , Chemokine CCL2/genetics , Complement C1r/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/diagnosis , Glioblastoma/pathology , Humans , Prognosis , Receptors, Tumor Necrosis Factor, Type I/genetics
17.
Oxid Med Cell Longev ; 2022: 2543220, 2022.
Article in English | MEDLINE | ID: mdl-35770048

ABSTRACT

Sorafenib is the first-line therapeutic regimen targeting against advanced or metastatic stage of hepatocellular carcinoma (HCC). However, HCC patients at these stages will eventually fail sorafenib treatment due to the drug resistance. At present, molecular mechanisms underlying sorafenib resistance are not completely understood. Our past studies have shown that DJ-1 is upregulated in HCC, while DJ-1 knockdown inhibits HCC xenograft-induced tumor growth and regeneration, implying that DJ-1 may be a potential target in for HCC treatment. However, whether DJ-1 plays a regulatory role between tumor cells and vascular endothelial cells and whether DJ-1 contributes to sorafenib resistance in HCC cells are largely unclear. To address these questions, we have performed a series of experiments in the current study, and we found that (1) DJ-1, one of the molecules secreted from HCC cells, promoted angiogenesis and migration of vascular endothelial cells (i.e., ECDHCC-1), by inducing phosphorylation of fibroblast growth factor receptor-1 (FGFR-1), phosphorylation of mTOR, phosphorylation of ERK, and phosphorylation of STAT3; (2) downregulation of FGFR1 inhibited tube formation and migration of ECDHCC-1 cells stimulated by DJ-1; (3) FGFR1 knockdown attenuated the phosphorylation of FGFR1 and impaired the activity of Akt, ERK, and STAT3 signals induced by DJ-1 in ECDHCC-1 cells; (4) knocking down FGFR1 led to the elevated expression of proapoptotic molecules but deceased level of antiapoptotic molecules in sorafenib-resistant HCC cells; and (5) Downregulation of FGFR1 suppressed tumor growth and angiogenesis of sorafenib-resistant HCC cells in vivo. Altogether, our results hinted that DJ-1 plays vital roles in tumor microenvironment in HCC development, and DJ-1/FGFR1 signaling pathway may be a therapeutic target for overcoming sorafenib resistance in treating HCC patients at the late stage.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Endothelial Cells/metabolism , Humans , Liver Neoplasms/pathology , Signal Transduction , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Microenvironment
18.
Inorg Chem ; 61(19): 7608-7616, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35500296

ABSTRACT

Electrocatalytic nitrogen reduction reaction (eNRR), a substitute process for the conventional Haber-Bosch for NH3 production, has drawn tremendous attention due to its merits in mild conditions, abundant reactant sources, low energy consumption, and environmental protection. However, electrocatalysts for eNRR are still subjected to low catalytic activity and selectivity. Herein, we constructed a CoS2/1T-MoS2 heterostructure with CoS2 nanoparticles uniformly loaded on 1T-MoS2 nanosheets and applied it as an eNRR electrocatalyst for the first time. Theoretical calculation suggests that electron transfer from CoS2 to 1T-MoS2 across their contact interface optimizes the local electronic structure of 1T-MoS2, where the electron-depletion region near CoS2 is in favor of accepting lone-pair electrons from N2 to enable N2 absorption, and the electron-accumulation region near 1T-MoS2 is conductive to break inert N≡N triple bonds. Unlike pure 1T-MoS2, the potential-determining step (PDS) demonstrates a significantly lower energy barrier. In addition, the weak interaction between CoS2/1T-MoS2 and hydrogen discourages competitive hydrogen evolution reaction. As a result, CoS2/1T-MoS2 exhibited noticeably improved eNRR activity and selectivity, with an NH3 yield of 59.3 µg h-1 mg-1 and a high Faradaic efficiency of 26.6%.

19.
Oncol Rep ; 46(6)2021 12.
Article in English | MEDLINE | ID: mdl-34643248

ABSTRACT

Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit­8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription­quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR­induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co­immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα­interacting protein­interacting protein at the C­terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Berberine/pharmacology , Glucose Transporter Type 1/drug effects , Proto-Oncogene Proteins c-akt/drug effects , TOR Serine-Threonine Kinases/drug effects , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Down-Regulation , Hep G2 Cells , Humans , MCF-7 Cells , Signal Transduction
20.
Front Immunol ; 12: 709986, 2021.
Article in English | MEDLINE | ID: mdl-34512630

ABSTRACT

Background: Nowadays, researchers are leveraging the mRNA-based vaccine technology used to develop personalized immunotherapy for cancer. However, its application against glioma is still in its infancy. In this study, the applicable candidates were excavated for mRNA vaccine treatment in the perspective of immune regulation, and suitable glioma recipients with corresponding immune subtypes were further investigated. Methods: The RNA-seq data and clinical information of 702 and 325 patients were recruited from TCGA and CGGA, separately. The genetic alteration profile was visualized and compared by cBioPortal. Then, we explored prognostic outcomes and immune correlations of the selected antigens to validate their clinical relevance. The prognostic index was measured via GEPIA2, and infiltration of antigen-presenting cells (APCs) was calculated and visualized by TIMER. Based on immune-related gene expression, immune subtypes of glioma were identified using consensus clustering analysis. Moreover, the immune landscape was visualized by graph learning-based dimensionality reduction analysis. Results: Four glioma antigens, namely ANXA5, FKBP10, MSN, and PYGL, associated with superior prognoses and infiltration of APCs were selected. Three immune subtypes IS1-IS3 were identified, which fundamentally differed in molecular, cellular, and clinical signatures. Patients in subtypes IS2 and IS3 carried immunologically cold phenotypes, whereas those in IS1 carried immunologically hot phenotype. Particularly, patients in subtypes IS3 and IS2 demonstrated better outcomes than that in IS1. Expression profiles of immune checkpoints and immunogenic cell death (ICD) modulators showed a difference among IS1-IS3 tumors. Ultimately, the immune landscape of glioma elucidated considerable heterogeneity not only between individual patients but also within the same immune subtype. Conclusions: ANXA5, FKBP10, MSN, and PYGL are identified as potential antigens for anti-glioma mRNA vaccine production, specifically for patients in immune subtypes 2 and 3. In summary, this study may shed new light on the promising approaches of immunotherapy, such as devising mRNA vaccination tailored to applicable glioma recipients.


Subject(s)
Antigens, Neoplasm/immunology , Brain Neoplasms/immunology , Cancer Vaccines/immunology , Glioma/immunology , Vaccines, Synthetic/immunology , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Humans , Immunotherapy , Mutation , Vaccine Development , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...