Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202412548, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136324

ABSTRACT

Aiming at the further extension of the application scope of traditional molecular muscles, a novel bispyrene-functionalized chiral molecular [c2]daisy chain was designed and synthesized. Taking advantage of the unique dimeric interlocked structure of molecular [c2]daisy chain, the resultant chiral molecular muscle emits strong circularly polarized luminescence (CPL) attributed to the pyrene excimer with a high dissymmetry factor (glum) value of 0.010. More importantly, along with the solvent- or anion- induced motions of the chiral molecular muscle, the precise regulation of the pyrene stacking within its skeleton results in the switching towards either "inversed" state with sign inversion and larger glum values or "down" state with maintained handedness and smaller glum values, making it a novel multistate CPL switch. As the first example of chiral molecular muscle-based CPL switch, this proof-of-concept study not only successfully widens the application scopes of molecular muscles, but also provides a promising platform for the construction of novel smart chiral luminescent materials for practical applications.

2.
Angew Chem Int Ed Engl ; : e202409878, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051526

ABSTRACT

Investigating the self-sorting behaviour of assemblies with subtle structural differences is a captivating yet challenging endeavour. Herein, we elucidate the unusual self-sorting behaviour of metallacages with subtle structural differences in batch reactors and microdroplets. Narcissistic self-sorting of metallacages has been observed for two ligands with identical sizes, shapes, and symmetries, with only minor differences in the substituted groups. In particular, the self-sorting process in microdroplets occurs within 1 min at room temperature, in stark contrast to batch reactors, which require equilibration for 30 min. To reveal the mechanism of self-sorting and the role of microdroplets, we conducted a series of experiments and theoretical calculations, including competitive self-assembly, cage-to-cage transformation, control experiments involving model metallacages with larger cavities, noncovalent interaction analysis, and root mean square deviation (RMSD) analysis. This research demonstrates an unusual case of self-sorting of very similar assemblies and provides a new strategy for facilitating the self-sorting efficiency of supramolecular systems.

3.
Angew Chem Int Ed Engl ; : e202408271, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837513

ABSTRACT

To explore the chirality induction and switching of topological chirality, poly[2]catenanes composed of helical poly(phenylacetylenes) (PPAs) main chain and topologically chiral [2]catenane pendants are described for the first time. These poly[2]catenanes with optically active [2]catenanes on side chains were synthesized by polymerization of enantiomerically pure topologically chiral [2]catenanes with ethynyl polymerization site and/or point chiral moiety. The chirality information of [2]catenane pendants was successfully transferred to the main chain of polyene backbones, leading to preferred-handed helical conformations, while the introduction of point chiral units has negligible effect on the overall helices. More interestingly, attributed to unique dynamic feature of the [2]catenane pendants, these polymers revealed dynamic response behaviors to solvents, temperature, and sodium ions, resulting in the fully reversible switching on/off of the chirality induction. This work provides not only new design strategy for novel chiroptical switches with topologically chiral molecules but also novel platforms for the development of smart chiral materials.

4.
Angew Chem Int Ed Engl ; : e202407929, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837292

ABSTRACT

Mechanically interlocked molecules (MIMs) are promising platforms for developing functionalized artificial molecular machines. The construction of chiral MIMs with appealing circularly polarized luminescence (CPL) properties has boosted their potential application in biomedicine and the optical industry. However, there is currently little knowledge about the CPL emission mechanism or the emission dynamics of these related MIMs. Herein, we demonstrate that time-resolved circularly polarized luminescence (TRCPL) spectroscopy combined with transient absorption (TA) spectroscopy offers a feasible approach to elucidate the origins of CPL emission in pyrene-functionalized topologically chiral [2]catenane as well as in a series of pyrene-functionalized chiral molecules. For the first time, direct evidence differentiating the chiroptical signals originating from either topological (local state emission) or Euclidean chirality (excimer state emission) in these pyrene-functionalized chiral molecules has been discovered. Our work not only establishes a novel and ideal approach to study CPL mechanism, but also provides a theoretical foundation for the rational design of novel chiral materials in the future.

5.
Angew Chem Int Ed Engl ; : e202407279, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872356

ABSTRACT

Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.

6.
Nat Commun ; 15(1): 3766, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704382

ABSTRACT

Coordination cages have been widely reported to bind a variety of guests, which are useful for chemical separation. Although the use of cages in the solid state benefits the recycling, the flexibility, dynamicity, and metal-ligand bond reversibility of solid-state cages are poor, preventing efficient guest encapsulation. Here we report a type of coordination cage-integrated solid materials that can be swelled into gel in water. The material is prepared through incorporation of an anionic FeII4L6 cage as the counterion of a cationic poly(ionic liquid) (MOC@PIL). The immobilized cages within MOC@PILs have been found to greatly affect the swelling ability of MOC@PILs and thus the mechanical properties. Importantly, upon swelling, the uptake of water provides an ideal microenvironment within the gels for the immobilized cages to dynamically move and flex that leads to excellent solution-level guest binding performances. This concept has enabled the use of MOC@PILs as efficient adsorbents for the removal of pollutants from water and for the purification of toluene and cyclohexane. Importantly, MOC@PILs can be regenerated through a deswelling strategy along with the recycling of the extracted guests.

7.
Chem Sci ; 15(19): 7178-7186, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756822

ABSTRACT

In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states. This work not only develops a new strategy for the design of new luminescent systems with tunable vibration induced emission, but also provides a promising platform for the construction of smart chiral luminescent materials for practical applications.

8.
Chem Soc Rev ; 53(12): 6042-6067, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38770558

ABSTRACT

A steady stream of material transport based on carriers and channels in living systems plays an extremely important role in normal life activities. Inspired by nature, researchers have extensively applied supramolecular cages in cargo transport because of their unique three-dimensional structures and excellent physicochemical properties. In this review, we will focus on the development of supramolecular cages as carriers and channels for cargo transport in abiotic and biological systems over the past fifteen years. In addition, we will discuss future challenges and potential applications of supramolecular cages in substance transport.

9.
Adv Sci (Weinh) ; 11(21): e2308181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459671

ABSTRACT

Developing synthetic molecular devices for controlling ion transmembrane transport is a promising research field in supramolecular chemistry. These artificial ion channels provide models to study ion channel diseases and have huge potential for therapeutic applications. Compared with self-assembled ion channels constructed by intermolecular weak interactions between smaller molecules or cyclic compounds, metallacage-based ion channels have well-defined structures and can exist as single components in the phospholipid bilayer. A naphthalene diimide-based artificial chloride ion channel is constructed through efficient subcomponent self-assembly and its selective ion transport activity in large unilamellar vesicles and the planar lipid bilayer membrane by fluorescence and ion-current measurements is investigated. Molecular dynamics simulations and density functional theory calculations show that the metallacage spans the entire phospholipid bilayer as an unimolecular ion transport channel. This channel transports chloride ions across the cell membrane, which disturbs the ion balance of cancer cells and inhibits the growth of cancer cells at low concentrations.

10.
Angew Chem Int Ed Engl ; 63(18): e202403149, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38421194

ABSTRACT

Expanded azahelicenes, as heteroanalogues of helically chiral helicenes, hold significant potential for chiroptical materials. Nevertheless, their investigation and research have remained largely unexplored. Herein, we present the facile synthesis of a series of expanded azahelicenes NHn (n=1-5) consisting of 11, 19, 27, 35, and 43 fused rings, mainly by Suzuki coupling followed by Bi(OTf)3-mediated cyclization of vinyl ethers. The structures of NH2, NH3 and NH4 were confirmed through X-ray crystallography analysis, and their (P)- and (M)- enantiomers were also isolated with chiral high performance liquid chromatography. The enantiomers exhibit large absorption (abs) and luminescence (lum) dissymmetry factors, with |gabs|max=0.044; |glum|max=0.003 for NH2, |gabs|max=0.048; |glum|=0.014 for NH3, and |gabs|max=0.043; |glum|max=0.021 for NH4, which are superior to their respective all-carbon analogues.

11.
Angew Chem Int Ed Engl ; 63(12): e202319502, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38279667

ABSTRACT

Aiming at the construction of novel stimuli-responsive fluorescent system with precisely tunable emissions, the typical 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) luminogen with attractive vibration-induced emission (VIE) behavior has been introduced into [2]rotaxane as a stopper. Taking advantage of their unique dual stimuli-responsiveness towards solvent and anion, the resultant [2]rotaxanes reveal both tunable VIE and switchable circularly polarized luminescence (CPL). Attributed to the formation of mechanical bonds, DPAC-functionalized [2]rotaxanes display interesting VIE behaviors including white-light emission upon the addition of viscous solvent, as evaluated in detail by femtosecond transient absorption (TA) spectra. In addition, ascribed to the regulation of chirality information transmission through anion-induced motions of chiral wheel, the resolved chiral [2]rotaxanes reveal unique switchable CPL upon the addition of anion, leading to significant increase in the dissymmetry factors (glum ) values with excellent reversibility. Interestingly, upon doping the chiral [2]rotaxanes in stretchable polymer, the blend films reveal remarkable emission change from white light to light blue with significant 6.5-fold increase in glum values up to -0.035 under external tensile stresses. This work provides not only a new design strategy for developing molecular systems with fluorescent tunability but also a novel platform for the construction of smart chiral luminescent materials for practical use.

12.
Chem Commun (Camb) ; 60(9): 1184-1187, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38193861

ABSTRACT

In this study, we designed and synthesized three conformation-adaptive Pd2L4- and Pd3L6-type coordination cages based on three dihydrophenazine-based ligands with different lengths. Interestingly, the shorter ligands L1 and L2 self-assembled into Pd2L4-type coordination cages while the longer ligand L3 formed Pd3L6-type one, mainly driven by the anion template effect. All coordination cages were confirmed through single-crystal X-ray diffraction, and their structural conformations underwent great changes compared with those of their corresponding ligands. Moreover, the conformational changes also significantly affected their photophysical and electrochemical properties which were distinct from their parent ligands.

SELECTION OF CITATIONS
SEARCH DETAIL