Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1168138, 2023.
Article in English | MEDLINE | ID: mdl-37593115

ABSTRACT

Pumpkin (Cucurbita moschata Duch.) productivity is severely hindered by powdery mildew (PM) worldwide. The causative agent of pumpkin PM is Podosphaera xanthii, a biotrophic fungus. Pathogenesis-related protein 1 (PR1) homolog was previously identified from transcriptomic analysis of a PM-resistant pumpkin. Here, we investigated the effects of CmPR1 gene from pumpkin for resistance to PM. Subcellular localization assay revealed that CmPR1 is a cytoplasmic protein in plants. The expression of CmPR1 gene was strongly induced by P. xanthii inoculation at 48 h and exogenous ethylene (ET), jasmonic acid (JA) and NaCl treatments, but repressed by H2O2 and salicylic acid (SA) treatments. Visual disease symptoms, histological observations of fungal growth and host cell death, and accumulation of H2O2 in transgenic tobacco plants indicated that CmPR1 overexpression significantly enhanced the resistance to Golovinomyces cichoracearum compared to wild type plants during PM pathogens infection, possibly due to inducing cell death and H2O2 accumulation near infected sites. The expression of PR1a was significantly induced in transgenic tobacco plants in response to G. cichoracearum, suggesting that CmPR1 overexpression positively modulates the resistance to PM via the SA signaling pathway. These findings indicate that CmPR1 is a defense response gene in C. moschata and can be exploited to develop disease-resistant crop varieties.

2.
Front Plant Sci ; 12: 779320, 2021.
Article in English | MEDLINE | ID: mdl-34956273

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2020.00163.].

3.
Front Plant Sci ; 11: 163, 2020.
Article in English | MEDLINE | ID: mdl-32318077

ABSTRACT

Powdery mildew (PM), caused by Podosphaera xanthii, is a major threat to the global cucurbit yield. The molecular mechanisms underlying the PM resistance of pumpkin (Cucurbita moschata Duch.) are largely unknown. A homolog of the basic helix-loop-helix (bHLH) transcription factor was previously identified through a transcriptomic analysis of a PM-resistant pumpkin. In this study, this bHLH homolog in pumpkin has been functionally characterized. CmbHLH87 is present in the nucleus. CmbHLH87 expression in the PM-resistant material was considerably downregulated by PM; and abscisic acid, methyl jasmonate, ethephon, and NaCl treatments induced CmbHLH87 expression. Ectopic expression of CmbHLH87 in tobacco plants alleviated the PM symptoms on the leaves, accelerated cell necrosis, and enhanced H2O2 accumulation. The expression levels of PR1a, PR5, and NPR1 were higher in the PM-infected transgenic plants than in PM-infected wild-type plants. Additionally, the chlorosis and yellowing of plant materials were less extensive and the concentration of bacteria at infection sites was lower in the transgenic tobacco plants than in the wild-type plants in response to bacterial wilt and scab pathogens. CmbHLH87 may be useful for genetic engineering of novel pumpkin cultivars in the future.

4.
Front Plant Sci ; 10: 955, 2019.
Article in English | MEDLINE | ID: mdl-31402923

ABSTRACT

Powdery mildew (PM), which is mainly caused by Podosphaera xanthii, is a serious biotrophic pathogen disease affecting field-grown and greenhouse-grown cucurbit crops worldwide. Because fungicides poorly control PM, the development and cultivation of PM-resistant varieties is critical. A homolog of SGT1 (suppressor of the G2 allele of skp1), which encodes a key component of the plant disease-associated signal transduction pathway, was previously identified through a transcriptomic analysis of a PM-resistant pumpkin (Cucurbita moschata) inbred line infected with PM. In this study, we have characterized this SGT1 homolog in C. moschata, and investigated its effects on biotic stress resistance. Subcellular localization results revealed that CmSGT1 is present in the nucleus. Additionally, CmSGT1 expression levels in the PM-resistant material was strongly induced by PM, salicylic acid (SA) and hydrogen peroxide (H2O2). In contrast, SA and H2O2 downregulated CmSGT1 expression in the PM-susceptible material. The ethephon (Eth) and methyl jasmonate (MeJA) treatments upregulated CmSGT1 expression in both plant materials. The constitutive overexpression of CmSGT1 in Nicotiana benthamiana (N. benthamiana) minimized the PM symptoms on the leaves of PM-infected seedlings, accelerated the onset of cell necrosis, and enhanced the accumulation of H2O2. Furthermore, the expression levels of PR1a and PR5, which are SA signaling transduction markers, were higher in the transgenic plants than in wild-type plants. Thus, the transgenic N. benthamiana plants were significantly more resistant to Erysiphe cichoracearum than the wild-type plants. This increased resistance was correlated with cell death, H2O2 accumulation, and upregulated expression of SA-dependent defense genes. However, the chlorosis and yellowing of plant materials and the concentration of bacteria at infection sites were greater in the transgenic N. benthamiana plants than in the wild-type plants in response to infections by the pathogens responsible for bacterial wilt and scab. Therefore, CmSGT1-overexpressing N. benthamiana plants were hypersensitive to these two diseases. The results of this study may represent valuable genetic information for the breeding of disease-resistant pumpkin varieties, and may also help to reveal the molecular mechanism underlying CmSGT1 functions.

5.
PLoS One ; 13(1): e0190175, 2018.
Article in English | MEDLINE | ID: mdl-29320569

ABSTRACT

Cucurbit powdery mildew (PM) is one of the most severe fungal diseases, but the molecular mechanisms underlying PM resistance remain largely unknown, especially in pumpkin (Cucurbita moschata Duch.). The goal of this study was to identify gene expression differences in PM-treated plants (harvested at 24 h and 48 h after inoculation) and untreated (control) plants of inbred line "112-2" using RNA sequencing (RNA-Seq). The inbred line "112-2" has been purified over 8 consecutive generations of self-pollination and shows high resistance to PM. More than 7600 transcripts were examined in pumpkin leaves, and 3129 and 3080 differentially expressed genes (DEGs) were identified in inbred line "112-2" at 24 and 48 hours post inoculation (hpi), respectively. Based on the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database and GO (Gene Ontology) database, a complex regulatory network for PM resistance that may involve hormone signal transduction pathways, transcription factors and defense responses was revealed at the transcription level. In addition, the expression profiles of 16 selected genes were analyzed using quantitative RT-PCR. Among these genes, the transcript levels of 6 DEGs, including bHLH87 (Basic Helix-loop-helix transcription factor), ERF014 (Ethylene response factor), WRKY21 (WRKY domain), HSF (heat stress transcription factor A), MLO3 (Mildew Locus O), and SGT1 (Suppressor of G-Two Allele of Skp1), in PM-resistant "112-2" were found to be significantly up- or down-regulated both before 9 hpi and at 24 hpi or 48 hpi; this behavior differed from that observed in the PM-susceptible material (cultivar "Jiujiangjiaoding"). The transcriptome data provide novel insights into the response of Cucurbita moschata to PM stress and are expected to be highly useful for dissecting PM defense mechanisms in this major vegetable and for improving pumpkin breeding with enhanced resistance to PM.


Subject(s)
Ascomycota/physiology , Cucurbita/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/genetics , Plant Leaves/metabolism , Disease Resistance , Gene Library , Gene Ontology , Metabolic Networks and Pathways/genetics , Photosynthesis/genetics , Plant Growth Regulators/physiology , Plant Leaves/microbiology , RNA, Plant/biosynthesis , RNA, Plant/genetics , Sequence Analysis, RNA , Signal Transduction/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...