Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Med Int (Lond) ; 4(6): 55, 2024.
Article in English | MEDLINE | ID: mdl-39092012

ABSTRACT

The present study examined the effect of wearing myopia glasses on eye movement and scleral blood supply. For this purpose, a total of 30 individuals were recruited for the present self-control study. Under the same fixation distance, the individuals wore 0.00 D and -10.00 D glasses. The amount of eye movement generated when shifting from gazing at a central point to a point light source located at the left or right was measured and compared between the two glasses. The results revealed that the range of eye movement was significantly reduced after wearing -10.00 D glasses. When gazing at the right point light source from the central point, the difference between the rotation distances of the right eye when wearing the 0.00 D glasses and the -10.0 D glasses was 0.73±0.45 mm (t=8.93, P<0.01) and that of the left eye was 0.73±0.43 mm (t=9.34, P<0.01). Similar results were obtained when the left point light source was viewed from a shift in gaze from the central point. On the whole, the present study demonstrates that wearing concave lenses limits eyeball movement. Restricted eyeball movement can affect vascular changes within the extraocular muscles and blood flow, thereby affecting the blood supply to the anterior segment and sclera of the eye, potentially accelerating the development of myopia.

2.
Cell Death Differ ; 31(9): 1127-1139, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871948

ABSTRACT

Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Lipocalin-2 , Liver Cirrhosis , MafG Transcription Factor , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Humans , Mice , Lipocalin-2/metabolism , Lipocalin-2/genetics , MafG Transcription Factor/metabolism , MafG Transcription Factor/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Mice, Inbred C57BL , Male , Signal Transduction
3.
Int J Biol Sci ; 20(4): 1218-1237, 2024.
Article in English | MEDLINE | ID: mdl-38385082

ABSTRACT

MCJ (Methylation-Controlled J protein), an endogenous repressor of the mitochondrial respiratory chain, is upregulated in multiple liver diseases but little is known about how it is regulated. S-adenosylmethionine (SAMe), the biological methyl donor, is frequently depleted in chronic liver diseases. Here, we show that SAMe negatively regulates MCJ in the liver. While deficiency in methionine adenosyltransferase alpha 1 (MATα1), enzyme that catalyzes SAMe biosynthesis, leads to hepatic MCJ upregulation, MAT1A overexpression and SAMe treatment reduced MCJ expression. We found that MCJ is methylated at lysine residues and that it interacts with MATα1 in liver mitochondria, likely to facilitate its methylation. Lastly, we observed that MCJ is upregulated in alcohol-associated liver disease, a condition characterized by reduced MAT1A expression and SAMe levels along with mitochondrial injury. MCJ silencing protected against alcohol-induced mitochondrial dysfunction and lipid accumulation. Our study demonstrates a new role of MATα1 and SAMe in reducing hepatic MCJ expression.


Subject(s)
Liver Diseases, Alcoholic , S-Adenosylmethionine , Humans , S-Adenosylmethionine/metabolism , Electron Transport , Liver/metabolism , Mitochondria/metabolism , Liver Diseases, Alcoholic/metabolism
4.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38086446

ABSTRACT

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/genetics , Liver Neoplasms/pathology , Matrix Metalloproteinase 7/genetics , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Prohibitins , Tumor Microenvironment
5.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958505

ABSTRACT

Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.


Subject(s)
Arsenic , Arsenites , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Arsenic/toxicity , Arsenic/metabolism , RecQ Helicases/metabolism , Quinazolines/pharmacology , Quinazolines/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Molecular Docking Simulation , Liver/metabolism , Oxidative Stress , Liver Cirrhosis/metabolism , Arsenites/toxicity
7.
BMC Pulm Med ; 23(1): 241, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400821

ABSTRACT

BACKGROUND: Limited data suggest that chronic obstructive pulmonary disease (COPD) patients have pathologic elevated epicardial adipose tissue (EAT), which is splanchnic fat tissue with anti-inflammatory properties and regulating free fatty acids functions. Therefore, there is a need for meta-analysis to explore the relationship between EAT and COPD. METHODS: Online databases were systematically searched for studies about EAT in COPD patients published up to October 5th, 2022. The EAT data of the COPD patient group and the control group were included. Trial sequential analysis (TSA) and meta-analysis were applied to assess the difference in EAT between patients with and without COPD. TSA software and Stata 12.0 were used in all statistical analyses. RESULTS: The final analysis included 5 studies (n = 596 patients). COPD patients had significantly more EAT than control subjects (SMD: 0.0.802; 95% CI: 0.231, 1.372; P = 0.006; TSA-adjusted 95% CI 1.20, 1.80; P < 0.0001). And higher CRP levels in COPD patients than non-COPD patients, whereas triglycerides and LDL were not significantly different between patients with and without COPD. CONCLUSION: EAT is abnormally elevated in COPD patients, which may be related to systemic inflammatory responses in COPD. PROSPERO NUMBER: CRD42021228273.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Adipose Tissue
8.
Hepatol Commun ; 7(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37347224

ABSTRACT

BACKGROUND: We established a novel diethylnitrosamine (DEN) -induced mouse model that reflected the progression of cholangiocarcinoma (CCA) from atypical cystic hyperplasia. METHODS: BALB/c mice were administered DEN by oral gavage. Cells isolated from livers were analyzed for expression of CSNK2A1, MAX and MAX-interacting proteins. Human CCA cell lines (MzChA-1, HuCCT1), normal human cholangiocyte (H69), human hepatic stellate cells (LX-2), macrophages (RAW 264.7), and primary hepatic cells were used for cellular and molecular biology assays. RESULTS: Expression of MAX, CSNK2A1, C-MYC, ß-catenin, HMGB1, and IL-6 was upregulated in hepatic cells from CCA liver tissue. The half-life of MAX is higher in CCA cells, and this favors their proliferation. Overexpression of MAX increased growth, migration, and invasion of MzChA-1, whereas silencing of MAX had the opposite effect. MAX positively regulated IL-6 and HMGB1 through paracrine signaling in HepG2, LX2, and RAW cells and autocrine signaling in MzChA-1 cells. CSNK2A1-mediated MAX phosphorylation shifts MAX-MAX homodimer to C-MYC-MAX and ß-catenin-MAX heterodimers and increases the HMGB1 and IL-6 promoter activities. Increase of MAX phosphorylation promotes cell proliferation, migration, invasion, and cholangiocarcinogenesis. The casein kinase 2 inhibitor CX-4945 induces cell cycle arrest and inhibits cell proliferation, migration, invasion, and carcinogenesis in MzChA-1 cells through the downregulation of CSNK2A1, MAX, and MAX-interaction proteins. CONCLUSION: C-MYC-MAX and ß-catenin-MAX binding to E-box site or ß-catenin-MAX bound to TCFs/LEF1 enhanced HMGB1 or IL-6 promoter activities, respectively. IL-6 and HMGB1 secreted by hepatocytes, HSCs, and KCs exert paracrine effects on cholangiocytes to promote cell growth, migration, and invasion and lead to the progression of cholangiocarcinogenesis. CX-4945 provides perspectives on therapeutic strategies to attenuate progression from atypical cystic hyperplasia to cholangiocarcinogenesis.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , HMGB1 Protein , Animals , Mice , Humans , beta Catenin/genetics , beta Catenin/metabolism , Interleukin-6/genetics , Hyperplasia/metabolism , Hyperplasia/pathology , Casein Kinase II/metabolism , HMGB1 Protein/genetics , Phosphorylation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic
9.
JAMA ; 329(8): 640-650, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36757755

ABSTRACT

Importance: Previous studies suggested a benefit of argatroban plus alteplase (recombinant tissue-type plasminogen activator) in patients with acute ischemic stroke (AIS). However, robust evidence in trials with large sample sizes is lacking. Objective: To assess the efficacy of argatroban plus alteplase for AIS. Design, Setting, and Participants: This multicenter, open-label, blinded end point randomized clinical trial including 808 patients with AIS was conducted at 50 hospitals in China with enrollment from January 18, 2019, through October 30, 2021, and final follow-up on January 24, 2022. Interventions: Eligible patients were randomly assigned within 4.5 hours of symptom onset to the argatroban plus alteplase group (n = 402), which received intravenous argatroban (100 µg/kg bolus over 3-5 minutes followed by an infusion of 1.0 µg/kg per minute for 48 hours) within 1 hour after alteplase (0.9 mg/kg; maximum dose, 90 mg; 10% administered as 1-minute bolus, remaining infused over 1 hour), or alteplase alone group (n = 415), which received intravenous alteplase alone. Both groups received guideline-based treatments. Main Outcomes and Measures: The primary end point was excellent functional outcome, defined as a modified Rankin Scale score (range, 0 [no symptoms] to 6 [death]) of 0 to 1 at 90 days. All end points had blinded assessment and were analyzed on a full analysis set. Results: Among 817 eligible patients with AIS who were randomized (median [IQR] age, 65 [57-71] years; 238 [29.1%] women; median [IQR] National Institutes of Health Stroke Scale score, 9 [7-12]), 760 (93.0%) completed the trial. At 90 days, 210 of 329 participants (63.8%) in the argatroban plus alteplase group vs 238 of 367 (64.9%) in the alteplase alone group had an excellent functional outcome (risk difference, -1.0% [95% CI, -8.1% to 6.1%]; risk ratio, 0.98 [95% CI, 0.88-1.10]; P = .78). The percentages of participants with symptomatic intracranial hemorrhage, parenchymal hematoma type 2, and major systemic bleeding were 2.1% (8/383), 2.3% (9/383), and 0.3% (1/383), respectively, in the argatroban plus alteplase group and 1.8% (7/397), 2.5% (10/397), and 0.5% (2/397), respectively, in the alteplase alone group. Conclusions and Relevance: Among patients with acute ischemic stroke, treatment with argatroban plus intravenous alteplase compared with alteplase alone did not result in a significantly greater likelihood of excellent functional outcome at 90 days. Trial Registration: ClinicalTrials.gov Identifier: NCT03740958.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Female , Aged , Male , Tissue Plasminogen Activator , Fibrinolytic Agents/therapeutic use , Stroke/drug therapy , Stroke/chemically induced , Ischemic Stroke/drug therapy , Brain Ischemia/drug therapy , Treatment Outcome
10.
Can J Gastroenterol Hepatol ; 2022: 6799414, 2022.
Article in English | MEDLINE | ID: mdl-36397950

ABSTRACT

The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Adipokines/metabolism , Adipokines/therapeutic use , Adipose Tissue , Hepatocytes/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism
11.
Front Endocrinol (Lausanne) ; 13: 1007944, 2022.
Article in English | MEDLINE | ID: mdl-36267567

ABSTRACT

Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Adipokines , NF-kappa B , PPAR alpha , Diabetes Mellitus, Type 2/complications , AMP-Activated Protein Kinases , Liver Cirrhosis/complications , Cytokines
12.
Plant Biotechnol J ; 20(6): 1140-1153, 2022 06.
Article in English | MEDLINE | ID: mdl-35244326

ABSTRACT

Maize is one of the world's most widely cultivated crops. As future demands for maize will continue to rise, fields will face ever more frequent and extreme weather patterns that directly affect crop productivity. Development of environmentally resilient crops with improved standability in the field, like wheat and rice, was enabled by shifting the architecture of plants to a short stature ideotype. However, such architectural change has not been implemented in maize due to the unique interactions between gibberellin (GA) and floral morphology which limited the use of the same type of mutations as in rice and wheat. Here, we report the development of a short stature maize ideotype in commercial hybrid germplasm, which was generated by targeted suppression of the biosynthetic pathway for GA. To accomplish this, we utilized a dominant, miRNA-based construct expressed in a hemizygous state to selectively reduce expression of the ZmGA20ox3 and ZmGA20ox5 genes that control GA biosynthesis primarily in vegetative tissues. Suppression of both genes resulted in the reduction of GA levels leading to inhibition of cell elongation in internodal tissues, which reduced plant height. Expression of the miRNA did not alter GA levels in reproductive tissues, and thus, the reproductive potential of the plants remained unchanged. As a result, we developed a dominant, short-stature maize ideotype that is conducive for the commercial production of hybrid maize. We expect that the new maize ideotype would enable more efficient and more sustainable maize farming for a growing world population.


Subject(s)
MicroRNAs , Oryza , Crops, Agricultural/genetics , Gibberellins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oryza/genetics , Plant Proteins , Triticum/genetics , Zea mays/metabolism
13.
ACS Appl Mater Interfaces ; 14(1): 2316-2325, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34965083

ABSTRACT

The construction of a heterojunction has been considered one of the most effective strategies to improve the photoelectrochemical (PEC) performance of photoanodes; however, most researchers only focus on the design and preparation of a novel and efficient heterojunction photoelectrode, and the investigation on the effect of the heterojunction interface structure on PEC performance is ignored. In this work, a TiO2/BiVO4 photoanode with a uniform crystal plane orientation in the heterojunction interface (TiO2-110/BiVO4-202) was prepared by an in situ transformation method. We found that the PEC activity of the TiO2/BiVO4 photoanode can be activated by constructing such a heterojunction interface. Compared with a TiO2/BiVO4 photoanode with a random crystal plane orientation prepared by a simple soaking-calcining method (S-TiO2/BiVO4, 0.04 mA/cm2 at 1.23 VRHE), the TiO2/BiVO4 photoanode prepared by the in situ transformation method (I-TiO2/BiVO4) exhibits a significantly better PEC performance, and the photocurrent density of I-TiO2/BiVO4 is about 2.2 mA/cm2 at 1.23 VRHE under visible light irradiation without a cocatalyst. This is mainly attributed to the fact that I-TiO2/BiVO4 has a faster electron transfer rate in the heterojunction interface according to the results of PEC analysis. Furthermore, density functional theory (DFT) calculations show that the BiVO4-202 surface has a higher Fermi energy level, thereby expediting the photogenerated carrier transport in the heterojunction interface. This work corroborates and strengthens the view that the heterojunction interface structure has a significant effect on the PEC performance.

14.
Nat Commun ; 12(1): 5351, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504063

ABSTRACT

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using experimentally parameterised and field-tested models, we show that climate change over the past 50 years increased the overwintering range of a global agricultural insect pest, the diamondback moth (Plutella xylostella), by ~2.4 million km2 worldwide. Our analysis of global data sets revealed that pesticide resistance levels are linked to the species' overwintering range: mean pesticide resistance was 158 times higher in overwintering sites compared to sites with only seasonal occurrence. By facilitating local persistence all year round, climate change can promote and expand pesticide resistance of this destructive species globally. These ecological and evolutionary changes would severely impede effectiveness of current pest control efforts and potentially cause large economic losses.

15.
Oncogene ; 40(39): 5866-5879, 2021 09.
Article in English | MEDLINE | ID: mdl-34349244

ABSTRACT

Methionine adenosyltransferase 1A (MAT1A) is a tumor suppressor downregulated in hepatocellular carcinoma and cholangiocarcinoma, two of the fastest rising cancers worldwide. We compared MATα1 (protein encoded by MAT1A) interactome in normal versus cancerous livers by mass spectrometry to reveal interactions with 14-3-3ζ. The MATα1/14-3-3ζ complex was critical for the expression of 14-3-3ζ. Similarly, the knockdown and small molecule inhibitor for 14-3-3ζ (BV02), and ChIP analysis demonstrated the role of 14-3-3ζ in suppressing MAT1A expression. Interaction between MATα1 and 14-3-3ζ occurs directly and is enhanced by AKT2 phosphorylation of MATα1. Blocking their interaction enabled nuclear MATα1 translocation and inhibited tumorigenesis. In contrast, overexpressing 14-3-3ζ lowered nuclear MATα1 levels and promoted tumor progression. However, tumor-promoting effects of 14-3-3ζ were eliminated when liver cancer cells expressed mutant MATα1 unable to interact with 14-3-3ζ. Taken together, the reciprocal negative regulation that MATα1 and 14-3-3ζ exert is a key mechanism in liver tumorigenesis.


Subject(s)
Liver Neoplasms , 14-3-3 Proteins , Animals , Carcinogenesis , Carcinoma, Hepatocellular , Cell Transformation, Neoplastic , Humans , Methionine Adenosyltransferase , Mice
16.
J Nanosci Nanotechnol ; 21(12): 6024-6034, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229800

ABSTRACT

Carbon dots have good biocompatibility, low toxicity, excellent photoluminescence properties, and good light stability, endowing them good application prospects in drug detection, chemical analysis, drug delivery, and other fields. In this study, p-phenylenediamine was used as the carbon source, and carbon dots were synthesized in hydrochloric acid medium using microwave method. When the excitation wavelength is about 300 nm, a strong emission peak of 689 nm is detected for the synthesized carbon dots. Carbon dots' size is about 4.0±0.2 nm, and the carbon dots with spherical shape are uniformly distributed. The quantum yield of carbon dots is 8.07%. In addition, cephalosporins. were detected and analyzed using synthetic carbon dots. The results show that the presence of cephalosporins reduced the fluorescence intensity of carbon dots, and the reduced fluorescence intensity of the synthesized carbon dots showed a linear correlation with the cephalosporins' concentration. Cephalosporins' detection scope is 0.2 µmol/L to 80 µ mol/L, and the detection limit is 0.084 µ mol/L. A mechanism study shows that the effect of cephalosporins on carbon dot's fluorescence intensity can be attributed to the inner filter effect of cephalosporins. On this basis, a sensitive and 0selective cephalosporins detection method was established. Furthermore, this established method for cephalosporins detection was applied to real samples, resulting in a low relative standard deviation (RSD) and good recoveries.


Subject(s)
Carbon , Quantum Dots , Cephalosporins , Fluorescent Dyes
17.
BMC Psychiatry ; 21(1): 353, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34261458

ABSTRACT

BACKGROUND: Effort-reward imbalance is an adverse psychological response to working conditions that has several negative effects on nurses. However, there is little research on effort-reward imbalance and its influencing factors among nurses in emergency departments. This study aimed to understand the current situation of effort-reward imbalance and explore its influencing factors among emergency department nurses in China. METHODS: From July to August 2018, a structured online questionnaire survey was conducted among emergency department nurses in China. Data were collected from emergency department nurses employed in hospitals providing pre-hospital care in China. The questionnaire consisted of sociodemographic characteristics, work-related factors and effort-reward imbalance. A descriptive analysis and a binary logistic regression were conducted to explore the effort-reward imbalance and its influencing factors among emergency department nurses. RESULTS: The study involved 17,582 emergency department nurses; notably, the prevalence of effort-reward imbalance was 59.66%. The participating nurses who were males, aged 25 to 34 years, whose educational level was a bachelor degree or above, who had a junior or above title, who had longer years of service, and who had suffered verbal or physical violence in the past year had a higher risk of effort-reward imbalance. Furthermore, the nurses with a high monthly income, who believed that the number of nurses met the department's demand had a lower risk of effort-reward imbalance. CONCLUSIONS: Effort-reward imbalance was prevalent among emergency department nurses in China. Measures such as adjusting the night shift frequency, increasing the number of nurses, raising salaries and reducing workplace violence should be considered to reduce the level of effort-reward imbalance.


Subject(s)
Nurses , Nursing Staff, Hospital , China , Cross-Sectional Studies , Emergency Service, Hospital , Humans , Job Satisfaction , Male , Reward , Surveys and Questionnaires
18.
Front Cell Infect Microbiol ; 11: 680422, 2021.
Article in English | MEDLINE | ID: mdl-34123876

ABSTRACT

Background: Sex and gender are crucial variables in coronavirus disease 2019 (COVID-19). We sought to provide information on differences in clinical characteristics and outcomes between male and female patients and to explore the effect of estrogen in disease outcomes in patients with COVID-19. Method: In this retrospective, multi-center study, we included all confirmed cases of COVID-19 admitted to four hospitals in Hubei province, China from Dec 31, 2019 to Mar 31, 2020. Cases were confirmed by real-time RT-PCR and were analyzed for demographic, clinical, laboratory and radiographic parameters. Random-effect logistic regression analysis was used to assess the association between sex and disease outcomes. Results: A total of 2501 hospitalized patients with COVID-19 were included in the present study. The clinical manifestations of male and female patients with COVID-19 were similar, while male patients have more comorbidities than female patients. In terms of laboratory findings, compared with female patients, male patients were more likely to have lymphopenia, thrombocytopenia, inflammatory response, hypoproteinemia, and extrapulmonary organ damage. Random-effect logistic regression analysis indicated that male patients were more likely to progress into severe type, and prone to ARDS, secondary bacterial infection, and death than females. However, there was no significant difference in disease outcomes between postmenopausal and premenopausal females after propensity score matching (PSM) by age. Conclusions: Male patients, especially those age-matched with postmenopausal females, are more likely to have poor outcomes. Sex-specific differences in clinical characteristics and outcomes do exist in patients with COVID-19, but estrogen may not be the primary cause. Further studies are needed to explore the causes of the differences in disease outcomes between the sexes.


Subject(s)
COVID-19 , Lymphopenia , China/epidemiology , Female , Humans , Male , Retrospective Studies , SARS-CoV-2
19.
World J Gastroenterol ; 27(22): 2944-2962, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34168400

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 is a global pandemic and poses a major threat to human health worldwide. In addition to respiratory symptoms, COVID-19 is usually accompanied by systemic inflammation and liver damage in moderate and severe cases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the expression of antioxidant proteins, participating in COVID-19-mediated inflammation and liver injury. Here, we show the novel reciprocal regulation between NRF2 and inflammatory mediators associated with COVID-19-related liver injury. Additionally, we describe some mechanisms and treatment strategies.


Subject(s)
COVID-19 , Inflammation Mediators , Liver Diseases/virology , NF-E2-Related Factor 2 , COVID-19/pathology , Humans , Inflammation Mediators/metabolism , Liver/metabolism , Liver/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , SARS-CoV-2 , Signal Transduction
20.
Antimicrob Resist Infect Control ; 10(1): 89, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34090536

ABSTRACT

BACKGROUND: Self-medication is one of the most common forms of inappropriate use of antibiotics. This study aimed to assess the prevalence of self-medication with antibiotics (SMA) in China and evaluate the related factors. METHODS: A cross-sectional survey was conducted in Wuhan, Hubei, China from July 1, 2019 to July 31, 2019. Participants were recruited in public places to answer a structured questionnaire. The information of participants' social demographic characteristics, antibiotic knowledge and health beliefs were collected. Binary Logistics regression analysis was used to examine the associated factors of SMA. RESULTS: Of the 3206 participants, 10.32% reported SMA in the past 6 months. Participants who with middle or high perceived barriers to seek health care services showed a higher likelihood of SMA (P < 0.05). Participants who with middle or high perceived threats of self-medication, and who with middle or high self-efficacy to overcome obstacles showed a lower likelihood of SMA (P < 0.05). CONCLUSIONS: Compared with developed countries, the prevalence of SMA in China is still higher. Measures to conduct public health education and improve the accessibility of health services are crucial to decrease the overall self-medication rate in China.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Self Medication/statistics & numerical data , Adult , China , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Male , Middle Aged , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL