Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Exp Bot ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717070

ABSTRACT

A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), differentiated from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as functional megaspore (FM), undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we reported that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. The mutations of RING1A/B resulted in defects in MMC and FM's specification and subsequent mitosis of FM, thereby leading to aborted ovules. Gene expression analysis revealed several genes essential for female gametophyte development, including Argonaute (AGO) family genes and critical transcription factors, were ectopically expressed in ring1a ring1b. Furthermore, RING1A/B bound some of these genes to promote H2A monoubiquitination (H2Aub) deposition. Together, RING1A/B promote H2Aub modification at genes essential for female gametophyte development, suppressing their expression to ensure the progression of female gametophyte development.

3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473796

ABSTRACT

Histones are the core components of the eukaryote chromosome, and have been implicated in transcriptional gene regulation. There are three major isoforms of histone H3 in Arabidopsis. Studies have shown that the H3.3 variant is pivotal in modulating nucleosome structure and gene transcription. However, the function of H3.3 during development remains to be further investigated in plants. In this study, we disrupted all three H3.3 genes in Arabidopsis. Two triple mutants, h3.3cr-4 and h3.3cr-5, were created by the CRISPR/Cas9 system. The mutant plants displayed smaller rosettes and decreased fertility. The stunted growth of h3.3cr-4 may result from reduced expression of cell cycle regulators. The shorter stamen filaments, but not the fertile ability of the gametophytes, resulted in reduced fertility of h3.3cr-4. The transcriptome analysis suggested that the reduced filament elongation of h3.3cr-4 was probably caused by the ectopic expression of several JASMONATE-ZIM DOMAIN (JAZ) genes, which are the key repressors of the signaling pathway of the phytohormone jasmonic acid (JA). These observations suggest that the histone variant H3.3 promotes plant growth, including rosette growth and filament elongation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Histones/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Plant Growth Regulators/metabolism
4.
Phys Chem Chem Phys ; 25(40): 27475-27487, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37800275

ABSTRACT

The power conversion efficiencies of organic solar cells (OSCs) have been greatly improved in recent years. However, latest experimental data of high efficiency OSCs, the sublinear relationship between the short circuit current density (Jsc) and light intensity (Pin), and the effects of energetic disorder in bulk heterojunction organic solar cells have not been understood. An analytical model for high-efficiency OSCs is proposed, which takes most physical factors into account that have been ignored in most previous models, including practical solar spectra and absorption spectra, degeneracy effect, exciton effect, space charge limited current, and unified mobility expression dependent on temperature, electric field and density, etc. Three analytical iterative methods are proposed to solve the strong non-linear Poisson equation and the drift-diffusion equations. The method for the drift-diffusion equations involves introducing two constant coefficients and determining their values self-consistently by demanding the space averages of approximate drift and diffusion currents equal to the averages of accurate ones. The theoretical results for five high-efficiency OSCs are in good agreement with experimental data, including current-voltage curves, light intensity-dependent Jsc and open-circuit voltage (Voc) curves. The effects of energetic disorder in bulk heterojunction organic solar cells, and the sublinear relationship Jsc ∝ Pαin (α < 1) can be well explained. The Saha equation for exciton dissociation and the space-charge-limited-current (SCLC) effect are important for modelling high-efficiency OSCs. The Voc ∼ Pin relationship can be influenced by many factors. But, the Jsc ∼ Pin relationship can be mainly and slightly influenced by the exciton effect and energetic disorder, respectively. When aiming to realize higher performance OSCs, one should decrease six material parameters, including the energetic disorder, exciton mass, deep level impurity concentration, the ratios of electron and hole mobilities, densities of states for electrons and holes, and potential barriers at the anode and cathode. The performance parameters of 15 triad compounds are predicted by using ab initio Eg and absorption spectra from the literature along with other input parameters taken from previous optimized values, and the efficiency of two compounds was found to exceed 35%.

6.
Clinics (Sao Paulo) ; 78: 100247, 2023.
Article in English | MEDLINE | ID: mdl-37413774

ABSTRACT

BACKGROUND: As a progressive cerebrovascular disease, Moyamoya Disease (MMD) is a common cause of stroke in children and adults. However, the early biomarkers and pathogenesis of MMD remain poorly understood. METHODS AND MATERIAL: This study was conducted using plasma exosome samples from MMD patients. Next-generation high-throughput sequencing, real-time quantitative PCR, gene ontology analysis, and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of ideal exosomal miRNAs that could be used as potential biomarkers of MMD were performed. The area under the Receiver Operating Characteristic (ROC) curve was used to evaluate the sensitivity and specificity of biomarkers for predicting events. RESULTS: Exosomes were successfully isolated and miRNA-sequence analysis yielded 1,002 differentially expressed miRNAs. Functional analysis revealed that they were mainly enriched in axon guidance, regulation of the actin cytoskeleton and the MAPK signaling pathway. Furthermore, 10 miRNAs (miR-1306-5p, miR-196b-5p, miR-19a-3p, miR-22-3p, miR-320b, miR-34a-5p, miR-485-3p, miR-489-3p, miR-501-3p, and miR-487-3p) were found to be associated with the most sensitive and specific pathways for MMD prediction. CONCLUSIONS: Several plasma secretory miRNAs closely related to the development of MMD have been identified, which can be used as biomarkers of MMD and contribute to differentiating MMD from non-MMD patients before digital subtraction angiography.


Subject(s)
MicroRNAs , Moyamoya Disease , Adult , Child , Humans , MicroRNAs/genetics , Pilot Projects , Moyamoya Disease/diagnosis , Moyamoya Disease/genetics , Biomarkers
7.
Behav Sci (Basel) ; 13(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37232671

ABSTRACT

BACKGROUND: We designed an exercise system in which the user is accompanied by a virtual partner (VP) and tested bodyweight squat performance with different interactive VP features to explore the comprehensive impact of these VP features on the individual's exercise level (EL) and exercise perception. METHODS: This experiment used three interactive features of VP, including body movement (BM), eye gaze (EG), and sports performance (SP), as independent variables, and the exercise level (EL), subjective exercise enjoyment, attitude toward the team formed with the VP, and local muscle fatigue degree of the exerciser as observational indicators. We designed a 2 (with or without VP's BM) × 2 (with or without VP's EG) × 2 (with or without VP's SP) within-participants factorial experiment. A total of 40 college students were invited to complete 320 groups of experiments. RESULTS: (1) Regarding EL, the main effects of BM and SP were significant (p < 0.001). The pairwise interaction effects of the three independent variables on EL were all significant (p < 0.05). (2) Regarding exercise perception, the main effects of BM (p < 0.001) and EG (p < 0.001) on subjective exercise enjoyment were significant. The main effect of BM on the attitude toward the sports team formed with the VP was significant (p < 0.001). The interaction effect of BM and SP on the attitude toward the sports team formed with the VP was significant (p < 0.001). (3) Regarding the degree of local muscle fatigue, the main effects of BM, EG, and SP and their interaction effects were not significant (p > 0.05). CONCLUSION: BM and EG from the VP elevate EL and exercise perception during squat exercises, while the VP with SP inhibited the EL and harmed exercise perception. The conclusions of this study can provide references to guide the interactive design of VP-accompanied exercise systems.

8.
Healthcare (Basel) ; 11(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37239804

ABSTRACT

In view of the importance of neck strength training and the lack of adequate training equipment, this study designed a new oscillating hydraulic trainer (OHT) of neck based on oscillating hydraulic damper. We used surface electromyography (sEMG) and subjective ratings to evaluate the neck OHT and compared the results with a simple hat trainer (HATT) and traditional weight trainer (TWT) to verify the feasibility and validity of the OHT. Under similar exercise conditions, 12 subjects performed a set of neck flexion and extension exercise with these 3 trainers. The sEMG signals of targeted muscles were collected in real time, and subjects were asked to complete subjective evaluations of product usability after exercise. The results showed that the root mean square (RMS%) of sEMG indicated that the OHT could provide two-way resistance and train the flexors and extensors simultaneously. The overall degree of muscle activation with OHT was higher than that with the other two trainers in one movement cycle. In terms of resistance characteristics exhibited by the sEMG waveform, duration (D) with OHT was significantly longer than HATT and TWT when exercising at a high speed, while Peak Timing (PT) was later. The ratings of product usability and performing usability of OHT were remarkably higher than that of HATT and TWT. Based on the above results, the OHT was proved to be more suitable for strength training, such as neck muscles, which were getting more attention gradually, but lacked mature and special training equipment.

9.
Front Vet Sci ; 10: 1139089, 2023.
Article in English | MEDLINE | ID: mdl-37215473

ABSTRACT

Infectious bronchitis virus (IBV) is a vital pathogen in poultry farms, which can induce respiratory, nephropathogenic, oviduct, proventriculus, and intestinal diseases. Based on the phylogenetic classification of the full-length S1 gene, IBV isolates have been categorized into nine genotypes comprising 38 lineages. GI (GI-1, GI-2, GI-3, GI-4, GI-5, GI-6, GI-7, GI-13, GI-16, GI-18, GI-19, GI-22, GI-28, and GI-29), GVI-1 and GVII-1 have been reported in China in the past 60 years. In this review, a brief history of IBV in China is described, and the current epidemic strains and licensed IBV vaccine strains, as well as IBV prevention and control strategies, are highlighted. In addition, this article presents unique viewpoints and recommendations for a more effective management of IBV. The recombinant Newcastle Disease virus (NDV) vector vaccine expressed S gene of IBV QX-like and 4/91 strains may be the dominant vaccine strains against NDV and IBV.

10.
J Virol ; 97(5): e0032423, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37042750

ABSTRACT

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Subject(s)
Newcastle Disease , Peptide Hydrolases , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Antibodies, Viral , Chickens , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle disease virus/physiology , Peptide Hydrolases/metabolism , Poultry Diseases/immunology , Poultry Diseases/virology , Vaccines, Attenuated , Viral Vaccines/administration & dosage , Virulence
11.
Nat Plants ; 9(2): 289-301, 2023 02.
Article in English | MEDLINE | ID: mdl-36797349

ABSTRACT

Translational reprogramming is a fundamental layer of immune regulation, but how such a global regulatory mechanism operates remains largely unknown. Here we perform a genetic screen and identify Arabidopsis HEM1 as a global translational regulator of plant immunity. The loss of HEM1 causes exaggerated cell death to restrict bacterial growth during effector-triggered immunity (ETI). By improving ribosome footprinting, we reveal that the hem1 mutant increases the translation efficiency of pro-death immune genes. We show that HEM1 contains a plant-specific low-complexity domain (LCD) absent from animal homologues. This LCD endows HEM1 with the capability of phase separation in vitro and in vivo. During ETI, HEM1 interacts and condensates with the translation machinery; this activity is promoted by the LCD. CRISPR removal of this LCD causes more ETI cell death. Our results suggest that HEM1 condensation constitutes a brake mechanism of immune activation by controlling the tissue health and disease resistance trade-off during ETI.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Disease Resistance , Plant Immunity/genetics , Plant Diseases/microbiology
12.
Clinics ; 78: 100247, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1506010

ABSTRACT

Abstract Background As a progressive cerebrovascular disease, Moyamoya Disease (MMD) is a common cause of stroke in children and adults. However, the early biomarkers and pathogenesis of MMD remain poorly understood. Methods and material This study was conducted using plasma exosome samples from MMD patients. Next-generation high-throughput sequencing, real-time quantitative PCR, gene ontology analysis, and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of ideal exosomal miRNAs that could be used as potential biomarkers of MMD were performed. The area under the Receiver Operating Characteristic (ROC) curve was used to evaluate the sensitivity and specificity of biomarkers for predicting events. Results Exosomes were successfully isolated and miRNA-sequence analysis yielded 1,002 differentially expressed miRNAs. Functional analysis revealed that they were mainly enriched in axon guidance, regulation of the actin cytoskeleton and the MAPK signaling pathway. Furthermore, 10 miRNAs (miR-1306-5p, miR-196b-5p, miR-19a-3p, miR-22-3p, miR-320b, miR-34a-5p, miR-485-3p, miR-489-3p, miR-501-3p, and miR-487-3p) were found to be associated with the most sensitive and specific pathways for MMD prediction. Conclusions Several plasma secretory miRNAs closely related to the development of MMD have been identified, which can be used as biomarkers of MMD and contribute to differentiating MMD from non-MMD patients before digital subtraction angiography.

13.
Molecules ; 27(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557783

ABSTRACT

Sophorae tonkinensis Radix et Rhizoma (STR) is a traditional Chinese herbal medicine. STR can reduce aminotransferase activity; however, the specific mechanism remains unclear. Here, we explored the potential therapeutic effects and hepatoprotective mechanism of STR on liver damage in mice. The chemical characteristics of the extract were characterized using ultra-high-performance liquid chromatography-tandem mass spectrometry fingerprinting, and its antioxidant capacity was verified using free radical scavenging tests. Forty-eight Kunming mice were randomly assigned into six groups. The model was made after the corresponding drug was given. The results showed that the STR water extract pretreatment significantly reduced serum aminotransferase and related liver function indicators compared with that in the model group. Furthermore, the STR water extract pretreatment significantly inhibited the apoptosis of liver cells, the level of liver high-mobility group box 1 (HMGB1), and inflammatory factors in hepatic tissue compared with that in the model group, and significantly downregulated the levels of toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) compared with those in the model group. Overall, the STR water extract exerted a significant protective effect on CCL4-induced acute liver injury in this study, and the accurate active ingredients of the STR water extract will be explored in the near future.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Sophora , Mice , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Carbon Tetrachloride/toxicity , Sophora/chemistry , Liver , Transaminases , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control
14.
Front Plant Sci ; 13: 983460, 2022.
Article in English | MEDLINE | ID: mdl-36110360

ABSTRACT

Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.

15.
New Phytol ; 235(6): 2439-2453, 2022 09.
Article in English | MEDLINE | ID: mdl-35633113

ABSTRACT

RPA2A is a subunit of the conserved heterotrimeric replication protein A (RPA) in Arabidopsis, which is an essential replisome component that binds to single-stranded DNA during DNA replication. RPA2A controls a set of developmental processes, but the underlying mechanism is largely unknown. Here we show that RPA2A represses key flowering genes including FLOWERING LOCUS T (FT), AGAMOUS (AG) and AGAMOUS LIKE 71 (AGL71) to suppress floral transition by cooperating with the PRC2 complex. RPA2A is vigorously expressed in dividing cells and required for correct DNA replication. Mutation of RPA2A leads to early flowering, which is dependent on ectopic expression of key flowering genes including FT molecularly and genetically. RPA2A and PRC2 have common target genes including FT, AG and AGL71 supported using genetic analysis, transcriptome profiling and H3K27me3 ChIP-seq analysis. Furthermore, RPA2A physically interacts with PRC2 components CLF, EMF2 and MSI1, which recruits CLF to the chromatin loci of FT, AG and AGL71. Together, our results show that the replication protein RPA2A recruits PRC2 to key flowering genes through physical protein interaction, thereby repressing the expression of these genes to suppress floral transition in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatin/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Mutation/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
16.
Article in English | MEDLINE | ID: mdl-35409552

ABSTRACT

Background: This study aimed to clarify the effect of music tempo on runners' perception of fatigue at different exercise intensities and while listening to music of different tempos through running experiments. Methods: This study used a within-subject two-factor experimental design with music tempo (fast music, slow music, no music) and exercise intensity (high intensity, low intensity) as independent variables and the time to fatigue perception (TFP), the difference in heart rate (HR) and the difference in the median frequency (MF) of surface electromyography (sEMG) signals as observation indexes. Eighteen participants completed a total of 108 sets of running experiments. Results: (1) The main effect of music tempo on the TFP was significant (p < 0.001). (2) The main effect of exercise intensity on the TFP was significant (p < 0.001), and the main effect on the difference in HR was significant (p < 0.001). (3) The interaction effect of music tempo and exercise intensity on the TFP was significant (p < 0.05). Conclusions: Exercisers' subjective perception of fatigue was affected by music tempo and the interaction between music tempo and exercise intensity, and exercisers' objective fatigue perception was influenced mostly by exercise intensity. The findings of this study provide guidance for runners' choice of music at different intensities of exercise. Whether it is low-intensity exercise or high-intensity exercise, listening to fast music while exercising can help runners perform better mentally and physically during their runs.


Subject(s)
Music , Running , Auditory Perception , Exercise/physiology , Fatigue , Humans , Running/physiology
17.
Comput Biol Med ; 141: 105156, 2022 02.
Article in English | MEDLINE | ID: mdl-34942392

ABSTRACT

Most studies on estimating user's joint angles to control upper-limb exoskeleton have focused on using surface electromyogram (sEMG) signals. However, the variations in limb velocity and acceleration can affect the sEMG data and decrease the angle estimation performance in the practical use of the exoskeleton. This paper demonstrated that the variations in elbow angular velocity (EAV) and elbow angular acceleration (EAA) associated with normal use led to a large effect on the elbow joint angle estimation. To minimize this effect, we proposed two methods: (1) collecting sEMG data of multiple EAVs and EAAs as training data and (2) measuring the values of EAV and EAA with a gyroscope. A self-developed upper-limb exoskeleton with pneumatic muscles was used in the online control phase to verify our methods' effectiveness. The predicted elbow angle from the sEMG-angle models which were trained in the offline estimation phase was transferred to control signal of the pneumatic muscles to actuate the exoskeleton to move to the same angle. In the offline estimation phase, the average root mean square error (RMSE) between predicted elbow angle and actual elbow angle was reduced from 22.54° to 10.01° (using method one) and to 6.45° (using method two), respectively; in the online control phase, method two achieved a best control performance (average RMSE = 6.87°). The results showed that using multi-sensor fusion (sEMG sensors and gyroscope) achieved a better estimation performance than using only sEMG sensor, which was helpful to eliminate the velocity and acceleration effect in real-time joint angle estimation for upper-limb exoskeleton control.


Subject(s)
Exoskeleton Device , Acceleration , Elbow/physiology , Electromyography/methods , Upper Extremity/physiology
18.
Front Microbiol ; 13: 1076154, 2022.
Article in English | MEDLINE | ID: mdl-36713183

ABSTRACT

Staphylococcus aureus continues to be one of the most important pathogens capable of causing a wide range of infections in different sites of the body in humans and livestock. With the emergence of methicillin-resistant strains and the introduction of strict laws on antibiotic usage in animals, antibiotic replacement therapy has become increasingly popular. Previous studies have shown that Portulaca oleracea L. extract exerts a certain degree of bacteriostatic effect, although the active ingredients are unknown. In the present study, the antibacterial activity of the organic acid of P. oleracea (OAPO) against S. aureus was examined using a series of experiments, including the minimum inhibitory concentration, growth curve, and bacteriostasis curve. In vitro antibacterial mechanisms were evaluated based on the integrity and permeability of the cell wall and membrane, scanning electron microscopy, and soluble protein content. A mouse skin wound recovery model was used to verify the antibacterial effects of OAPO on S. aureus in vivo. The results showed that OAPO not only improved skin wound recovery but also decreased the bacterial load in skin wounds. Moreover, the number of inflammatory cells and cytokines decreased in the OAPO-treated groups. In summary, this study reports a botanical extract that can inhibit S. aureus in vitro and in vivo, indicating the potential use of OAPO to prevent and control S. aureus infection in the near future.

20.
Genes Dev ; 35(11-12): 888-898, 2021 06.
Article in English | MEDLINE | ID: mdl-33985972

ABSTRACT

Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Cold Temperature , Gene Expression Regulation, Plant/physiology , MADS Domain Proteins/genetics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...