Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nat Commun ; 15(1): 3611, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684677

ABSTRACT

The emergence of Homo sapiens in Eastern Asia is a topic of significant research interest. However, well-preserved human fossils in secure, dateable contexts in this region are extremely rare, and often the subject of intense debate owing to stratigraphic and geochronological problems. Tongtianyan cave, in Liujiang District of Liuzhou City, southern China is one of the most important fossils finds of H. sapiens, though its age has been debated, with chronometric dates ranging from the late Middle Pleistocene to the early Late Pleistocene. Here we provide new age estimates and revised provenience information for the Liujiang human fossils, which represent one of the most complete fossil skeletons of H. sapiens in China. U-series dating on the human fossils and radiocarbon and optically stimulated luminescence dating on the fossil-bearing sediments provided ages ranging from ~33,000 to 23,000 years ago (ka). The revised age estimates correspond with the dates of other human fossils in northern China, at Tianyuan Cave (~40.8-38.1 ka) and Zhoukoudian Upper Cave (39.0-36.3 ka), indicating the geographically widespread presence of H. sapiens across Eastern Asia in the Late Pleistocene, which is significant for better understanding human dispersals and adaptations in the region.


Subject(s)
Fossils , Radiometric Dating , Humans , China , Caves , Skeleton , History, Ancient , Geologic Sediments
2.
Environ Sci Pollut Res Int ; 31(13): 20383-20398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379041

ABSTRACT

Heavy-polluting enterprises' investment in environmental protection will have a "crowding out effect" on their other inputs, affecting enterprise performance. However, if the environmental protection investment of enterprises improves their green technology innovation ability, resulting in the "innovation compensation effect," which can offset the "crowding out effect" of environmental protection inputs, it may have a positive impact on enterprise performance. This can offset the "crowding out effect" of environmental investment and may promote the performance of enterprises. At the same time, equity concentration plays the role of "tunneling effect" and "monitoring and incentive effect" in the process of environmental protection investment affecting the performance of heavy-polluting enterprises. The paper selects the data of A-share listed heavy-polluting enterprises in China from 2010 to 2019 and analyzes the impacts of environmental protection investment and green technology innovation on the performance of heavy-polluting enterprises by using a multidimensional panel fixed-effects model. The results show that environmental protection investment will improve the performance of heavy-polluting enterprises by improving their green technology innovation ability; green technology innovation plays a partly intermediary role in the process of environmental protection investment affecting the performance of enterprises, and the magnitude of this intermediary role is regulated by the concentration of corporate equity. Based on the results of the empirical study, it is recommended that heavy-polluting enterprises should accelerate the pace of green technology research and development and results transformation, optimize the proportion of equity allocation, and achieve the dual goals of fulfilling environmental responsibilities and enhancing corporate performance.


Subject(s)
Conservation of Natural Resources , Investments , China , Empirical Research , Technology , Environmental Policy
3.
Math Biosci Eng ; 21(1): 1590-1609, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38303479

ABSTRACT

As a type of programmed cell death, anoikis resistance plays an essential role in tumor metastasis, allowing cancer cells to survive in the systemic circulation and as a key pathway for regulating critical biological processes. We conducted an exploratory analysis to improve risk stratification and optimize adjuvant treatment choices for patients with breast cancer, and identify multigene features in mRNA and lncRNA transcriptome profiles associated with anoikis. First, the variance selection method filters low information content genes in RNA sequence and then extracts the mRNA and lncRNA expression data base on annotation files. Then, the top ten key mRNAs are screened out through the PPI network. Pearson analysis has been employed to identify lncRNAs related to anoikis, and the prognosis-related lncRNAs are selected using Univariate Cox regression and machine learning. Finally, we identified a group of RNAs (including ten mRNAs and six lncRNAs) and integrated the expression data of 16 genes to construct a risk-scoring system for BRCA prognosis and drug sensitivity analysis. The risk score's validity has been evaluated with the ROC curve, Kaplan-Meier survival curve analysis and decision curve analysis (DCA). For the methylation data, we have obtained 169 anoikis-related prognostic methylation sites, integrated these sites with 16 RNA features and further used the deep learning model to evaluate and predict the survival risk of patients. The developed anoikis feature is demonstrated a consistency index (C-index) of 0.778, indicating its potential to predict the survival probability of breast cancer patients using deep learning methods.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Breast Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , DNA Methylation , Anoikis/genetics , Gene Expression Regulation, Neoplastic
4.
Plant Biotechnol J ; 22(5): 1269-1281, 2024 May.
Article in English | MEDLINE | ID: mdl-38073308

ABSTRACT

A fast evolution within mitochondria genome(s) often generates discords between nuclear and mitochondria, which is manifested as cytoplasmic male sterility (CMS) and fertility restoration (Rf) system. The maize CMS-C trait is regulated by the chimeric mitochondrial gene, atp6c, and can be recovered by the restorer gene ZmRf5. Through positional cloning in this study, we identified the nuclear restorer gene, ZmRf5, which encodes a P-type pentatricopeptide repeat (PPR) family protein. The over-expression of ZmRf5 brought back the fertility to CMS-C plants, whereas its genomic editing by CRISPR/Cas9 induced abortive pollens in the restorer line. ZmRF5 is sorted to mitochondria, and recruited RS31A, a splicing factor, through MORF8 to form a cleaving/restoring complex, which promoted the cleaving of the CMS-associated transcripts atp6c by shifting the major cleavage site from 480th nt to 344 th nt for fast degradation, and preserved just right amount of atp6c RNA for protein translation, providing adequate ATP6C to assembly complex V, thus restoring male fertility. Interestingly, ATP6C in the sterile line CMo17A, with similar cytology and physiology changes to YU87-1A, was accumulated much less than it in NMo17B, exhibiting a contrary trend in the YU87-1 nuclear genome previously reported, and was restored to normal level in the presence of ZmRF5. Collectively these findings unveil a new molecular mechanism underlying fertility restoration by which ZmRF5 cooperates with MORF8 and RS31A to restore CMS-C fertility in maize, complemented and perfected the sterility mechanism, and enrich the perspectives on communications between nucleus and mitochondria.


Subject(s)
Fertility , Zea mays , Zea mays/genetics , RNA Splicing Factors , Cytoplasm/genetics , Fertility/genetics , Mitochondria/genetics , Plant Infertility/genetics
5.
Magn Reson Med ; 91(5): 1965-1977, 2024 May.
Article in English | MEDLINE | ID: mdl-38084397

ABSTRACT

PURPOSE: To develop a highly-accelerated, real-time phase contrast (rtPC) MRI pulse sequence with 40 fps frame rate (25 ms effective temporal resolution). METHODS: Highly-accelerated golden-angle radial sparse parallel (GRASP) with over regularization may result in temporal blurring, which in turn causes underestimation of peak velocity. Thus, we amplified GRASP performance by synergistically combining view-sharing (VS) and k-space weighted image contrast (KWIC) filtering. In 17 pediatric patients with congenital heart disease (CHD), the conventional GRASP and the proposed GRASP amplified by VS and KWIC (or GRASP + VS + KWIC) reconstruction for rtPC MRI were compared with respect to clinical standard PC MRI in measuring hemodynamic parameters (peak velocity, forward volume, backward volume, regurgitant fraction) at four locations (aortic valve, pulmonary valve, left and right pulmonary arteries). RESULTS: The proposed reconstruction method (GRASP + VS + KWIC) achieved better effective spatial resolution (i.e., image sharpness) compared with conventional GRASP, ultimately reducing the underestimation of peak velocity from 17.4% to 6.4%. The hemodynamic metrics (peak velocity, volumes) were not significantly (p > 0.99) different between GRASP + VS + KWIC and clinical PC, whereas peak velocity was significantly (p < 0.007) lower for conventional GRASP. RtPC with GRASP + VS + KWIC also showed the ability to assess beat-to-beat variation and detect the highest peak among peaks. CONCLUSION: The synergistic combination of GRASP, VS, and KWIC achieves 25 ms effective temporal resolution (40 fps frame rate), while minimizing the underestimation of peak velocity compared with conventional GRASP.


Subject(s)
Contrast Media , Heart Defects, Congenital , Humans , Child , Magnetic Resonance Imaging/methods , Lung , Pulmonary Artery , Heart Defects, Congenital/diagnostic imaging
6.
RSC Adv ; 13(48): 33905-33910, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38019995

ABSTRACT

The Ni-rich NCM622 is a promising cathode material for future high energy lithium ion batteries, but unstable electrochemical performance of NCM622 hinder its large scale commercial application. The cycling peformance of nickel-rich LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode materials can be improved by surface coating. Here, a one-step approach based on TiF4 is used to successfully manufacture modified NCM622 cathode materials with a TiO2-LiF coating. The TiO2-LiF coated NCM622 preserves 79.7% capacity retention which is higher than the pure NCM622 (68.9%) at 1C after 200 cycles within 2.7-4.3 V. This material serves as the cathode for lithium-ion batteries (LIBs). The uniform TiO2-LiF coating layer can alleviate structural degradation brought on by unfavorable side reactions with the electrolyte has been validated. TiO2-LiF coated on NCM622 cathode materials can be modified easily by one-step approach.

7.
Int Heart J ; 64(6): 1040-1048, 2023.
Article in English | MEDLINE | ID: mdl-38030291

ABSTRACT

The prognosis of patients with nonvalvular atrial fibrillation (NVAF) with a low CHA2DS2-VASc score (0-1) following a stroke is not well studied. In this investigation, stroke risk factors and prognostic markers in low-risk NVAF patients who are nonetheless at risk for stroke were examined.From January 2012 to January 2022, we retrospectively assessed atrial fibrillation (AF) patients at Xiamen University's Zhongshan Hospital for ischemic stroke. Along with a control group of patients with CHA2DS2-VASc scores of 0-1 who weren't suffering from a stroke, patients with CHA2DS2-VASc scores of 0-1 at the time of stroke were included in the study. Using multivariate logistic regression, independent risk factors were identified. To assess the cumulative occurrences of in-hospital mortality in patients with NVAF-related stroke, the Kaplan-Meier method was used.The study included 156 out of 3.237 inpatients with AF-related stroke who had CHA2DS2-VASc ratings of 0-1. Left atrial diameter (LAD) (odds ratio [OR]: 1.858, 95% confidence interval (CI) 1.136-3.036, P = 0.013), D-dimer (OR: 2.569, 95% CI 1.274-5.179, P = 0.008), and NT-proBNP (OR: 4.558, 95% CI 2.060-10.087, P = 0.000) were found to be independent risk factors for stroke in NVAF patients with a low CHA2DS2-VASc score. During hospitalization, nine patients with NVAF-related stroke died. In patients with NVAF-related stroke, NT-proBNP (hazard ratio: 3.504, 95% CI 1.079-11.379, P = 0.037) was an indicator of mortality risk.Patients with NVAF and CHA2DS2-VASc scores of 0-1 had independent risk factors for stroke in the form of LAD, D-dimer, and NT-proBNP. Notably, in low-risk NVAF patients with stroke, NT-proBNP was discovered to be a potent predictor of in-hospital death.


Subject(s)
Atrial Fibrillation , Stroke , Humans , Prognosis , Retrospective Studies , Hospital Mortality , Risk Factors , Stroke/epidemiology , Stroke/etiology , Risk Assessment
8.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894713

ABSTRACT

In this paper, the bio-based raw material erythritol was used to introduce an acetal structure into the benzoxazine resins. The benzoxazine-based resins containing an erythritol acetal structure could be degraded in an acidic solution and were environmentally friendly thermosetting resins. Compounds and resins were characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared (FT-IR) analyses, and melting points were studied by a differential scanning calorimeter (DSC); the molecular weight was analyzed by gel permeation chromatography (GPC). The dynamic mechanical properties and thermal stability of polybenzoxazine resins were studied by dynamic mechanical thermal analysis (DMTA) and a thermogravimetric analyzer (TGA), respectively. The thermal aging, wet-heat resistance, and degradation properties of polybenzoxazine resins were tested. The results showed that the polybenzoxazine resins synthesized in this paper had good thermal-oxidative aging, and wet-heat resistance and could be completely degraded in an acidic solution (55 °C DMF: water: 1 mol/L hydrochloric acid solution = 5:2:4 (v/v/v)).

9.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569902

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipid that regulates physiological and pathological processes in numerous cell biological functions, including cell migration, apoptosis, and proliferation. Macrophages are found in most human tissues and have multiple physiological and pathological functions. There is growing evidence that LPA signaling plays a significant role in the physiological function of macrophages and accelerates the development of diseases caused by macrophage dysfunction and inflammation, such as inflammation-related diseases, cancer, atherosclerosis, and fibrosis. In this review, we summarize the roles of LPA in macrophages, analyze numerous macrophage- and inflammation-associated diseases triggered by LPA, and discuss LPA-targeting therapeutic strategies.


Subject(s)
Lysophospholipids , Receptors, Lysophosphatidic Acid , Humans , Macrophages , Inflammation
10.
Chin J Nat Med ; 21(7): 540-550, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37517821

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).


Subject(s)
Amyotrophic Lateral Sclerosis , Ginsenosides , Neurodegenerative Diseases , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Ginsenosides/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Culture Media, Conditioned/pharmacology , Superoxide Dismutase-1 , Neurons/metabolism , Apoptosis
11.
Huan Jing Ke Xue ; 44(6): 3573-3584, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309972

ABSTRACT

In order to explore the distribution characteristics and the influence mechanism of migration and transformation of heavy metals in mining wasteland, soil and tailings samples were collected from the mining wasteland in the Dabaoshan Mining area, Guangdong Province, and the morphological characteristics of heavy metals were analyzed. At the same time, the pollution sources of the mining area were analyzed using Pb stable isotope analysis, and the characteristics and influencing factors of heavy metal migration and transformation in the mining area were expounded by combining X-ray diffraction analysis, transmission electron microscope-energy spectrum analysis (TEM-EDS), and Raman analysis of typical minerals in the mining area, as well as laboratory-simulated leaching experiments. Morphological analysis showed that the forms of Cd, Pb, and As in the soil and tailings samples in the mining area were mainly the residual phase, accounting for 85%-95% of the total, followed by the iron and manganese oxide-bound form (1%-15%). The main mineral types in the soil and tailings in the Dabaoshan Mining area were pyrite (FeS2), chalcopyrite (CuFeS2), and metal oxides, as well as a small amount of sphalerite (ZnS) and galena (PbS). Acidic conditions (pH=3.0) were beneficial to the release and migration of Cd and Pb from soil, tailings, and minerals (pyrite, chalcopyrite) and from the residual phase to the non-residual phase. Lead isotope analysis showed that the lead in the soil and tailings mainly came from the release of metal minerals in the mining area, and the contribution of diesel in the mining area was less than 30%. Multivariate statistical analysis showed that Pyrite, Chalcopyrite, Sphalerite, and Metal oxide were the main sources of heavy metals in the soil and tailings in the mining area, in which Cd, As, and Pb were mainly contributed by sphalerite and metal oxide. The form change in heavy metals in the mining wasteland was easily affected by environmental factors. The form characteristics and migration and transformation factors of heavy metals should be considered in the source control of heavy metal pollution in mining wasteland.

12.
J Chem Inf Model ; 63(10): 3005-3017, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37155923

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) pneumonia continues to spread in the entire globe with limited medication available. In this study, the active compounds in Chinese medicine (CM) recipes targeting the transmembrane serine protease 2 (TMPRSS2) protein for the treatment of COVID-19 were explored. METHODS: The conformational structure of TMPRSS2 protein (TMPS2) was built through homology modeling. A training set covering TMPS2 inhibitors and decoy molecules was docked to TMPS2, and their docking poses were re-scored with scoring schemes. A receiver operating characteristic (ROC) curve was applied to select the best scoring function. Virtual screening of the candidate compounds (CCDs) in the six highly effective CM recipes against TMPS2 was conducted based on the validated docking protocol. The potential CCDs after docking were subject to molecular dynamics (MD) simulations and surface plasmon resonance (SPR) experiment. RESULTS: A training set of 65 molecules were docked with modeled TMPS2 and LigScore2 with the highest area under the curve, AUC, value (0.886) after ROC analysis selected to best differentiate inhibitors from decoys. A total of 421 CCDs in the six recipes were successfully docked into TMPS2, and the top 16 CCDs with LigScore2 higher than the cutoff (4.995) were screened out. MD simulations revealed a stable binding between these CCDs and TMPS2 due to the negative binding free energy. Lastly, SPR experiments validated the direct combination of narirutin, saikosaponin B1, and rutin with TMPS2. CONCLUSIONS: Specific active compounds including narirutin, saikosaponin B1, and rutin in CM recipes potentially target and inhibit TMPS2, probably exerting a therapeutic effect on COVID-19.


Subject(s)
COVID-19 , Serine Proteinase Inhibitors , Humans , COVID-19 Drug Treatment , Medicine, Chinese Traditional , Molecular Docking Simulation , Molecular Dynamics Simulation , Rutin , Serine Endopeptidases/chemistry , Surface Plasmon Resonance , Serine Proteinase Inhibitors/pharmacology
13.
Environ Sci Pollut Res Int ; 30(21): 60920-60931, 2023 May.
Article in English | MEDLINE | ID: mdl-37042916

ABSTRACT

The microalgae-based system attracts more attention in wastewater treatment for high quality effluent, low carbon emission, and resource utilization. Light is the key factor for algae growth, but the light masking in sewage will cause low efficiency of the system. This study designed laboratory scale experiments with Chlorella to investigate the influence of cerium on the nutrient removal by algae wastewater treatment system under different light intensities. The best removal rates of NH4-N, TP, and COD were 72.43%, 88.87%, and 68.08% under 50 µmol/(m 2·s) light intensity and 1 mg/L Ce. Low concentration of Ce could activate protein synthesis, electron transfer, and antioxidase, while excessive Ce might cause toxicity which could be relieved by strong light for energy supply and further activating superoxide dismutase (SOD) and catalase (CAT). Comparing to other similar experiences, this system reached an equal or greater performance on nutrients removal with better efficiency in light utilization. It might provide a new idea for microalgae-based system development.


Subject(s)
Cerium , Chlorella , Microalgae , Water Purification , Wastewater , Biomass , Nitrogen
14.
Front Immunol ; 14: 992765, 2023.
Article in English | MEDLINE | ID: mdl-36776897

ABSTRACT

Introduction: Recurrent implantation failure (RIF) is a frustrating challenge because the cause is unknown. The current study aims to identify differentially expressed genes (DEGs) in the endometrium on the basis of immune cell infiltration characteristics between RIF patients and healthy controls, as well as to investigate potential prognostic markers in RIF. Methods: GSE103465, and GSE111974 datasets from the Gene Expression Omnibus database were obtained to screen DEGs between RIF and control groups. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes Pathway analysis, Gene Set Enrichment Analysis, and Protein-protein interactions analysis were performed to investigate potential biological functions and signaling pathways. CIBERSORT was used to describe the level of immune infiltration in RIF, and flow cytometry was used to confirm the top two most abundant immune cells detected. Results: 122 downregulated and 66 upregulated DEGs were obtained between RIF and control groups. Six immune-related hub genes were discovered, which were involved in Wnt/-catenin signaling and Notch signaling as a result of our research. The ROC curves revealed that three of the six identified genes (AKT1, PSMB8, and PSMD10) had potential diagnostic values for RIF. Finally, we used cMap analysis to identify potential therapeutic or induced compounds for RIF, among which fulvestrant (estrogen receptor antagonist), bisindolylmaleimide-ix (CDK and PKC inhibitor), and JNK-9L (JNK inhibitor) were thought to influence the pathogenic process of RIF. Furthermore, our findings revealed the level of immune infiltration in RIF by highlighting three signaling pathways (Wnt/-catenin signaling, Notch signaling, and immune response) and three potential diagnostic DEGs (AKT1, PSMB8, and PSMD10). Conclusion: Importantly, our findings may contribute to the scientific basis for several potential therapeutic agents to improve endometrial receptivity.


Subject(s)
Embryo Implantation , Genes, Regulator , Signal Transduction , Female , Humans , Biomarkers , Catenins , Computational Biology , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins , Endometrium , Pregnancy
15.
BMC Biol ; 20(1): 276, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482461

ABSTRACT

BACKGROUND: Decidualization refers to the process of transformation of endometrial stromal fibroblast cells into specialized decidual stromal cells that provide a nutritive and immunoprivileged matrix essential for blastocyst implantation and placental development. Deficiencies in decidualization are associated with a variety of pregnancy disorders, including female infertility, recurrent implantation failure (RIF), and miscarriages. Despite the increasing number of genes reportedly associated with endometrial receptivity and decidualization, the cellular and molecular mechanisms triggering and underlying decidualization remain largely unknown. Here, we analyze single-cell transcriptional profiles of endometrial cells during the window of implantation and decidual cells of early pregnancy, to gains insights on the process of decidualization. RESULTS: We observed a unique IGF1+ stromal cell that may initiate decidualization by single-cell RNA sequencing. We found the IL1B+ stromal cells promote gland degeneration and decidua hemostasis. We defined a subset of NK cells for accelerating decidualization and extravillous trophoblast (EVT) invasion by AREG-IGF1 and AREG-CSF1 regulatory axe. Further analysis indicates that EVT promote decidualization possibly by multiply pathways. Additionally, a systematic repository of cell-cell communication for decidualization was developed. An aberrant ratio conversion of IGF1+ stromal cells to IGF1R+ stromal cells is observed in unexplained RIF patients. CONCLUSIONS: Overall, a unique subpopulation of IGF1+ stromal cell is involved in initiating decidualization. Our observations provide deeper insights into the molecular and cellular characterizations of decidualization, and a platform for further development of evaluation of decidualization degree and treatment for decidualization disorder-related diseases.


Subject(s)
Placenta , Stromal Cells , Pregnancy , Humans , Female , Insulin-Like Growth Factor I/genetics
16.
Medicine (Baltimore) ; 101(50): e32357, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36550852

ABSTRACT

BACKGROUND: The pathological mechanism of nonalcoholic steatohepatitis (NASH) is closely related to abnormal lipid regulation in hepatocytes. Patients with NASH generally have a significant increase in de novo lipogenesis, which acetyl-CoA carboxylase (ACC) catalyzes the first committed step. However, the treatment with ACC inhibitors remains controversial. Thus, our study will systematically evaluate the efficacy and safety of ACC inhibitors for the treatment of NASH. METHODS: We plan to search PubMed, Cochrane Library, Web of Science, EMBASE, Google Scholar, ClinicalTrials.gov, China Science and Technology Journal Database, Chinese Biomedical Literature Database, Wan-fang Database and China National Knowledge Infrastructure to obtain literatures from January 2015 to January 2030 under the inclusion and exclusion criteria, and include randomized controlled trials containing intervention of ACC inhibitors for NASH. The proportion of patients with reduction in ballooning, inflammation and fibrosis will be accepted as the main outcome. RoB 2 will be used for the risk of bias, as well as Egger's test and funnel plot for reporting bias. We will adopt Review Manager 5.4.1 for data synthesis, subgroup analysis, meta-regression analysis and sensitivity analysis, and conduct trial sequential analysis and quality of evidence evaluation using trial sequential analysis 0.9.5.10 Beta software and GRADE Profiler 3.6.1 software respectively. RESULTS: This systematic review will assess the proportion of patients with reduction of ballooning, inflammation and fibrosis, changes in hepatic steatosis, levels of liver enzymes and liver injury markers, metabolic parameters, safety and tolerability to measure the clinical benefits of ACC inhibitors for NASH. CONCLUSION: The conclusion of this systematic review will achieve convincing evidence to evaluate the efficacy and safety of ACC inhibitors for NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Acetyl-CoA Carboxylase , Inflammation , Fibrosis , Systematic Reviews as Topic
17.
Cell Mol Life Sci ; 79(12): 611, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36449080

ABSTRACT

Deficiency of decidual NK (dNK) cell number and function has been widely regarded as an important cause of spontaneous abortion. However, the metabolic mechanism underlying the crosstalk between dNK cells and embryonic trophoblasts during early pregnancy remains largely unknown. Here, we observed that enriched glutamine and activated glutaminolysis in dNK cells contribute to trophoblast invasion and embryo growth by insulin-like growth factor-1 (IGF-1) and growth differentiation factor-15 (GDF-15) secretion. Mechanistically, these processes are dependent on the downregulation of EGLN1-HIF-1α mediated by α-ketoglutarate (α-KG). Blocking glutaminolysis with the GLS inhibitor BPTES or the glutamate dehydrogenase inhibitor EGCG leads to early embryo implantation failure, spontaneous abortion and/or fetal growth restriction in pregnant mice with impaired trophoblast invasion. Additionally, α-KG supplementation significantly alleviated pregnancy loss mediated by defective glutaminolysis in vivo, suggesting that inactivated glutamine/α-ketoglutarate metabolism in dNK cells impaired trophoblast invasion and induced pregnancy loss.


Subject(s)
Abortion, Spontaneous , Animals , Female , Mice , Pregnancy , Cell Differentiation , Glutamine/pharmacology , Growth Differentiation Factor 15 , Insulin-Like Growth Factor I , Ketoglutaric Acids/pharmacology
18.
PeerJ ; 10: e14171, 2022.
Article in English | MEDLINE | ID: mdl-36389420

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease, the incidence of which increases annually. Shugan Xiaozhi (SGXZ) decoction, a composite traditional Chinese medicinal prescription, has been demonstrated to exert a therapeutic effect on NAFLD. In this study, the potential bioactive ingredients and mechanism of SGXZ decoction against NAFLD were explored via network pharmacology, molecular docking, and molecular dynamics simulation. Methods: Compounds in SGXZ decoction were identified and collected from the literature, and the corresponding targets were predicted through the Similarity Ensemble Approach database. Potential targets related to NAFLD were searched on DisGeNET and GeneCards databases. The compound-target-disease and protein-protein interaction (PPI) networks were constructed to recognize key compounds and targets. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on the targets. Molecular docking was used to further screen the potent active compounds in SGXZ. Finally, molecular dynamics (MD) simulation was applied to verify and validate the binding between the most potent compound and targets. Results: A total of 31 active compounds and 220 corresponding targets in SGXZ decoction were collected. Moreover, 1,544 targets of NAFLD were obtained, of which 78 targets intersected with the targets of SGXZ decoction. Key compounds and targets were recognized through the compound-target-disease and PPI network. Multiple biological pathways were annotated, including PI3K-Akt, MAPK, insulin resistance, HIF-1, and tryptophan metabolism. Molecular docking showed that gallic acid, chlorogenic acid and isochlorogenic acid A could combine with the key targets. Molecular dynamics simulations suggested that isochlorogenic acid A might potentially bind directly with RELA, IL-6, VEGFA, and MMP9 in the regulation of PI3K-Akt signaling pathway. Conclusion: This study investigated the active substances and key targets of SGXZ decoction in the regulation of multiple-pathways based on network pharmacology and computational approaches, providing a theoretical basis for further pharmacological research into the potential mechanism of SGXZ in NAFLD.


Subject(s)
Molecular Dynamics Simulation , Non-alcoholic Fatty Liver Disease , Humans , Molecular Docking Simulation , Network Pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
19.
Theranostics ; 12(15): 6527-6547, 2022.
Article in English | MEDLINE | ID: mdl-36185612

ABSTRACT

Introduction: Despite great advances in assisted reproductive technology (ART), recurrent implantation failure (RIF) cannot be effectively avoided. Notably, cellular characteristics and communication that regulate endometrial receptivity and differentiation, and its disorders in RIF at window of implantation (WOI) remain rudimentary. Objectives: In this study, we profiled the endometrial cells present at the WOI timing in RIF patients and healthy controls using single-cell RNA sequencing (scRNA-seq) and provided a detailed molecular and cellular map of a healthy and RIF endometrium at the WOI. Method: In the current study, the endometrium from RIF patient (n = 6; age range, 32 - 35 years) and control (Ctrl) (n = 3; age range, 29 - 35 years) groups were studied at a single-cell resolution. single-cell RNA-seq and analysis were performed on the endometrium of patients with RIF and Ctrl. Immunofluorescence, flow cytometry assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to verify cellular identity and function. Results: We profiled the transcriptomes of 60222 primary human endometrial cells isolated from control and RIF patients at a single-cell resolution. We discovered dramatic differential expression of endometrial receptivity-related genes in four major endometrial fibroblast-like cells from RIF patients compared to the control endometrium. We observed that CD49a+CXCR4+NK cells were diminished in proportion with RIF. The decrease in subset of CD63highPGRhigh endometrial epithelial cells with high levels of progesterone receptor, autophagy and exosomes should contribute to the decrease in subset of NK cells. Additionally, we characterized aberrant molecular and cellular characteristics and endometrial cell-cell communication disorders in RIF patients. Conclusion: Our study provides deeper insights into endometrial microenvironment disorder of RIF that are potentially applicable to improving the etiological diagnosis and therapeutics of unexplained RIF.


Subject(s)
Integrin alpha1 , Receptors, Progesterone , Adult , Embryo Implantation/genetics , Endometrium/metabolism , Female , Gene Expression Profiling , Humans , Integrin alpha1/genetics , Integrin alpha1/metabolism , Receptors, Progesterone/genetics
20.
Int J Med Sci ; 19(9): 1430-1441, 2022.
Article in English | MEDLINE | ID: mdl-36035375

ABSTRACT

Uterine corpus endometrial carcinoma (UCEC) is one of the most common types of cancer in women, and the incidence is rapidly increasing. Studies have shown that various signaling pathways serve crucial roles in the tumorigenesis of UCEC, amongst which the Wnt/ß-catenin pathway is of great interest due to its crucial role in cell proliferation and the huge potential as a therapeutic target. In the present study, it was shown that FBXO17, which is a member of the F-box family, is abnormally downregulated in UCEC tissues compared with non-tumor endometrial tissues, and this was significantly associated with the clinical histological grade, as well as the abnormal proliferation of the UCEC cell line, Ishikawa, both in vitro and in vivo. Besides, the results suggested that FBXO17 may inhibit the Wnt/ß-catenin signaling pathway and influence the expression of adhesion molecules, such as E-cadherin and N-cadherin in Ishikawa cells. In conclusion, these findings indicate that FBXO17 is a novel inhibitor of endometrial tumor development and it likely exerts effects via regulation of the Wnt signaling pathway.


Subject(s)
Endometrial Neoplasms , F-Box Proteins , Wnt Signaling Pathway , Cell Line, Tumor , Cell Proliferation , Endometrial Neoplasms/pathology , F-Box Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , beta Catenin
SELECTION OF CITATIONS
SEARCH DETAIL
...