Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Adv Mater ; 35(41): e2300546, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36892995

ABSTRACT

Pixelating patterns of red, green, and blue quantum dots (QDs) is a critical challenge for realizing high-end displays with bright and vivid images for virtual, augmented, and mixed reality. Since QDs must be processed from a solution, their patterning process is completely different from the conventional techniques used in the organic light-emitting diode and liquid crystal display industries. Although innovative QD patterning technologies are being developed, photopatterning based on the light-induced chemical conversion of QD films is considered one of the most promising methods for forming micrometer-scale QD patterns that satisfy the precision and fidelity required for commercialization. Moreover, the practical impact will be significant as it directly exploits mature photolithography technologies and facilities that are widely available in the semiconductor industry. This article reviews recent progress in the effort to form QD patterns via photolithography. The review begins with a general description of the photolithography process. Subsequently, different types of photolithographical methods applicable to QD patterning are introduced, followed by recent achievements using these methods in forming high-resolution QD patterns. The paper also discusses prospects for future research directions.

3.
Adv Mater ; 34(43): e2205504, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35985813

ABSTRACT

Electroluminescence from quantum dots (QDs) is a suitable photon source for futuristic displays offering hyper-realistic images with free-form factors. Accordingly, a nondestructive and scalable process capable of rendering multicolored QD patterns on a scale of several micrometers needs to be established. Here, nondestructive direct photopatterning for heavy-metal-free QDs is reported using branched light-driven ligand crosslinkers (LiXers) containing multiple azide units. The branched LiXers effectively interlock QD films via photo-crosslinking native aliphatic QD surface ligands without compromising the intrinsic optoelectronic properties of QDs. Using branched LiXers with six sterically engineered azide units, RGB QD patterns are achieved on the micrometer scale. The photo-crosslinking process does not affect the photoluminescence and electroluminescence characteristics of QDs and extends the device lifetime. This nondestructive method can be readily adapted to industrial processes and make an immediate impact on display technologies, as it uses widely available photolithography facilities and high-quality heavy-metal-free QDs with aliphatic ligands.

4.
Nat Nanotechnol ; 17(9): 952-958, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35953539

ABSTRACT

Colloidal quantum dots (QDs) stand at the forefront of a variety of photonic applications given their narrow spectral bandwidth and near-unity luminescence efficiency. However, integrating luminescent QD films into photonic devices without compromising their optical or transport characteristics remains challenging. Here we devise a dual-ligand passivation system comprising photocrosslinkable ligands and dispersing ligands to enable QDs to be universally compatible with solution-based patterning techniques. The successful control over the structure of both ligands allows the direct patterning of dual-ligand QDs on various substrates using commercialized photolithography (i-line) or inkjet printing systems at a resolution up to 15,000 pixels per inch without compromising the optical properties of the QDs or the optoelectronic performance of the device. We demonstrate the capabilities of our approach for QD-LED applications. Our approach offers a versatile way of creating various structures of luminescent QDs in a cost-effective and non-destructive manner, and could be implemented in nearly all commercial photonics applications where QDs are used.

5.
ACS Appl Mater Interfaces ; 13(22): 26330-26338, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34037381

ABSTRACT

The hole density of individual copper sulfide nanocrystals (Cu2-xS NCs) is determined from the stoichiometric mismatch (x) between copper and sulfide atoms. Consequently, the electronic properties of the material vary over a range of x. To exploit Cu2-xS NCs in devices, assemblies of NCs are typically required. Herein, we investigate the influence of x, referred to as the stoichiometric doping effect, on the structural, optical, electrical, and thermoelectric properties of electronically coupled Cu2-xS NC assemblies. The doping process is done by immersing the solid NC assemblies into a solution containing a Cu(I) complex for different durations (0-10 min). As Cu+ gradually occupied the copper-deficient sites of Cu2-xS NCs, x could be controlled from 0.9 to less than 0.1. Consequently, the near-infrared (NIR) absorbance of Cu2-xS NC assemblies changes systematically with x. With increasing x, electrical conductivity increased and the Seebeck coefficient decreased systematically, leading to the maximal thermoelectric power factor from a film of Cu2-xS NCs at an optimal doping condition yielding x = 0.1. The physical characteristics of the Cu2-xS NC assemblies investigated herein will provide guidelines for exploiting this emerging class of nanocrystal system based on doping.

6.
Nat Commun ; 11(1): 2874, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32513918

ABSTRACT

Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 µm × 16 µm, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained.

7.
Nat Commun ; 11(1): 1520, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32251285

ABSTRACT

All-solution processing of large-area organic electronics requires multiple steps of patterning and stacking of various device components. Here, we report the fabrication of highly integrated arrays of polymer thin-film transistors and logic gates entirely through a series of solution processes. The fabrication is done using a three-dimensional crosslinker in tetrahedral geometry containing four photocrosslinkable azide moieties, referred to as 4Bx. 4Bx can be mixed with a variety of solution-processable electronic materials (polymer semiconductors, polymer insulators, and metal nanoparticles) and generate crosslinked network under exposure to UV. Fully crosslinked network film can be formed even at an unprecedentedly small loading, which enables preserving the inherent electrical and structural characteristics of host material. Because the crosslinked electronic component layers are strongly resistant to chemical solvents, micropatterning the layers at high resolution as well as stacking the layers on top of each other by series of solution processing steps is possible.

8.
J Phys Chem Lett ; 9(7): 1573-1583, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29521511

ABSTRACT

Lead halide perovskites with nanoscale geometries have received recent attention due to the defect-tolerant high photoluminescence quantum yield at tunable emission wavelengths and the possibility of room-temperature synthesis that does not compromise the physical properties of the materials. These characteristics offer opportunities to advance displays that cover the widest perceivable color. However, lead toxicity obstructs the commercialization of this technology. Therefore, recent efforts have investigated lead-free halide perovskite nanocrystals. Here, we provide our perspectives on the most exciting achievements in the materials design and photophysical properties of lead-free perovskite nanocrystals, particularly for applications in light-emitting devices. This Perspective includes a short summary on the characteristic features of halide perovskite nanocrystals; discussion on the candidate elements to replace lead; methods to prepare colloidal lead-free perovskite nanocrystals; methods to control and enhance the optical properties; a recent demonstration of utilizing lead-free perovskite nanocrystals in light-emitting devices; and an outlook on the field.

9.
ACS Appl Mater Interfaces ; 10(11): 9563-9570, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29468869

ABSTRACT

We present nonvolatile transistor memory devices that rely on the formation of electric double layer (EDL) at the semiconductor-electrolyte interface. The two critical functional components of the devices are the ion gel electrolyte and gold nanoparticles (NPs). The ion gel electrolyte contains ionic species for EDL formation that allow inducing charges in the semiconductor-electrolyte interface. The gold NPs inserted between the ion gel and the channel layer serve as trapping sites to the induced charges to store the electrical input signals. Two different types of gold NPs were used: one prepared using direct thermal evaporation and the other prepared using a colloidal process. The organic ligands attached onto the colloidal gold NPs prevented the escape of the trapped charges from the particles and thus enhanced the retention characteristics of the programmed/erased signals. The low-voltage-driven EDL formation resulted in a programmed/erased memory signal ratio larger than 103 from the nonvolatile indium-gallium-zinc oxide transistor memory devices at voltages below 10 V, which could be held for >105 s. The utility of the electrolytes to operate memory devices demonstrated herein should provide an alternative strategy to realize cheap, portable electronic devices powered with thin-film batteries.

10.
ACS Appl Mater Interfaces ; 9(46): 40503-40515, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29090568

ABSTRACT

We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 107. The highest hole mobility of 1.51 cm2 V-1 s-1 and the highest electron mobility of 0.85 cm2 V-1 s-1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

11.
ACS Appl Mater Interfaces ; 9(34): 28817-28827, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28783949

ABSTRACT

High carrier mobilities have recently been achieved in polymer field effect transistors (FETs). However, many of these polymer FET devices require the use of chlorinated solvents such as chloroform (CF), chlorobenzene (CB), and o-dichlorobenzene (DCB) during fabrication. The use of these solvents is highly restricted in industry because of health and environmental issues. Here, we report the synthesis of a low band gap (1.43 eV, 870 nm) semiconducting polymer (PDPP2DT-F2T2) having a planar geometry, which can be readily processable with nonchlorinated solvents such as toluene (TOL), o-xylene (XY), and 1,2,4-trimethylbenzene (TMB). We performed structural characterization of PDPP2DT-F2T2 films prepared from different solvents, and the electrical properties of the films were measured in the context of FETs. The devices exhibited an ambipolar behavior with hole dominant transport. Hole mobilities increased with increasing boiling point (bp) of the nonchlorinated solvents: 0.03, 0.05, and 0.10 cm2 V-1 s-1 for devices processed using TOL, XY, and TMB, respectively. Thermal annealing further improved the FET performance. TMB-based polymer FETs annealed at 200 °C yielded a maximum hole mobility of 1.28 cm2 V-1 s-1, which is far higher than the 0.43 cm2 V-1 s-1 obtained from the CF-based device. This enhancement was attributed to increased interchain interactions as well as improved long-range interconnection between fibrous domains. Moreover, all of the nonchlorinated solutions generated purely edge-on orientations of the polymer chains, which is highly beneficial for carrier transport in FET devices. Furthermore, we fabricated an array of flexible TMB-processed PDPP2DT-F2T2 FETs on the plastic PEN substrates. These devices demonstrated excellent carrier mobilities and negligible degradation after 300 bending cycles. Overall, we demonstrated that the organized assembly of polymer chains can be achieved by slow drying using high bp nonchlorinated solvents and a post thermal treatment. Furthermore, we showed that polymer FETs processed using high bp nonhalogenated solvents may outperform those processed using halogenated solvents.

12.
Nano Lett ; 17(4): 2433-2439, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28349694

ABSTRACT

Herein, we report unique features of the assemblies of tetrapod-shaped colloidal nanocrystals (TpNCs) with lengthy arms applicable to flexible thin-film transistors. Due to the extended nature of tetrapod geometry, films made of the TpNC assemblies require reduced numbers of inter-NC hopping for the transport of charge carriers along a given channel length; thus, enhanced conductivity can be achieved compared to those made of typical spherical NCs without arms. Moreover, electrical conduction through the assemblies is tolerant against mechanical bending because interconnections between TpNCs can be well-preserved under bending. Interestingly, both the conductivity of the assemblies and their mechanical tolerance against bending are improved with an increase in the length of tetrapod arms. The arm length-dependency was demonstrated in a series of CdSe TpNC assemblies with different arm lengths (l = 0-90 nm), whose electrical conduction was modulated through electrolyte gating. From the TpNCs with the longest arm length included in the study (l = 90 nm), the film conductivity as high as 20 S/cm was attained at 3 V of gate voltage, corresponding to electron mobility of >10 cm2/(V s) even when evaluated conservatively. The high channel conductivity was retained (∼90% of the value obtained from the flat geometry) even under high bending (bending radius = 5 mm). The results of the present study provide new insights and guidelines for the use of colloidal nanocrystals in solution-processed flexible electronic device applications.

SELECTION OF CITATIONS
SEARCH DETAIL