Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475569

ABSTRACT

MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.

2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542463

ABSTRACT

DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars ('Long10' (drought tolerant) and 'DXY' (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding.


Subject(s)
Arabidopsis , Solanum tuberosum , Transcription Factors/genetics , Transcription Factors/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Drought Resistance , Phylogeny , Plant Breeding , Arabidopsis/genetics , Droughts , DNA/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36768844

ABSTRACT

One of the main impacts of drought stress on plants is an excessive buildup of reactive oxygen species (ROS). A large number of ·OH, highly toxic to cells, will be produced if too much ROS is not quickly cleared. At the heart of antioxidant enzymes is superoxide dismutase (SOD), which is the first antioxidant enzyme to function in the active oxygen scavenging system. To shield cells from oxidative injury, SOD dismutation superoxide anion free radicals generate hydrogen peroxide and molecule oxygen. Cu/Zn SOD is a kind of SOD antioxidant enzyme that is mostly found in higher plants' cytoplasm and chloroplasts. Other studies have demonstrated the significance of the miR398s family of miRNAs in the response of plants to environmental stress. The cleavage location of potato stu-miR398b-3p on Cu/Zn SOD mRNA was verified using RLM-5'RACE. Using the potato variety 'Desiree', the stu-miR398b-3p overexpression mutant was created, and transgenic lines were raised. SOD activity in transgenic lines was discovered to be decreased during drought stress, although other antioxidant enzyme activities were mostly unaltered. Transgenic plants will wilt more quickly than wild-type plants without irrigation. Additionally, this demonstrates that the response of Cu/Zn SOD to drought stress is adversely regulated by potato stu-miR398b-3p.


Subject(s)
Solanum tuberosum , Reactive Oxygen Species , Superoxide Dismutase-1/genetics , Solanum tuberosum/genetics , Antioxidants , Drought Resistance , Superoxide Dismutase/genetics , Superoxides , Zinc
4.
Genes Genomics ; 45(2): 231-245, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35819623

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are about 21 snucleotide (nt) long, non-coding RNAs that play an important role in plant abiotic stress responses. Chinese jujube is a native fruit tree in China, which is also an admittedly drought-resistant plant. But the drought-related miRNAs have little been reported in jujube. OBJECTIVE: To identify possibly drought-responsive microRNAs and their target genes in Chinese Jujube. METHODS: Twelve small RNA libraries were constructed from two jujube genotypes both drought treated and control samples with three replicates to identify known and novel miRNAs in Chinese Jujube, DESeq2 was used to identify expression pattern of miRNAs between drought treatment and control samples, TargetFinder program was used to predict potential target genes of conserved and novel miRNAs, RT-qPCR were used to analysis the expression levels of drought-related miRNAs and their potential targets. The RNA ligase-mediated RLM-5' RACE experiments were performed to validate predicted target genes of drought-related miRNAs. RESULTS: 43 known miRNAs and 431 novel miRNAs were identified in Chinese jujube. Expression analysis showed that 28 miRNAs were differential expressed under drought stress in jujube variety "Dongzao", including 21 up-regulated miRNAs and 7 down-regulated miRNAs, 61 miRNAs were differential expressed under drought stress in Chinese jujube variety "Zanhuangdazao", including 23 up-regulated miRNAs and 37 down-regulated miRNAs. Depend on miRNAs target prediction, functional annotation and expression analysis, we identified 9 drought-related miRNAs, and 7 target genes of 6 miRNAs were confirmed using the modified 5'-RACE method. Also, RT-qPCR analyses revealed that relative expression of those miRNAs and their targets have negative tendency. CONCLUSION: We identified 6 drought-related miRNAs by high-throughout sequencing and target gene annotation from Chinese jujube, and targets of those miRNAs were confirmed by the modified 5'-RACE method. These findings provide molecular evidence for enhancing drought tolerance in Chinese jujube and other plants.


Subject(s)
MicroRNAs , Ziziphus , Droughts , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , MicroRNAs/metabolism , Ziziphus/genetics , Ziziphus/metabolism
5.
Front Plant Sci ; 14: 1334620, 2023.
Article in English | MEDLINE | ID: mdl-38259924

ABSTRACT

Abiotic/biotic stresses pose a major threat to agriculture and food security by impacting plant growth, productivity and quality. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long non-coding RNAs (lncRNAs) with sizes larger than 200 nucleotides in length, provides an important new perspective on the centrality of RNA in gene regulation. In plants, lncRNAs are widespread and fulfill multiple biological functions in stress response. In this paper, the research advances on the biological function of lncRNA in plant stress response were summarized, like as Natural Antisense Transcripts (NATs), Competing Endogenous RNAs (ceRNAs) and Chromatin Modification etc. And in plants, lncRNAs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid (ABA), jasmonate (JA), salicylic acid (SA) and redox signaling in response to many abiotic/biotic stresses. Moreover, conserved sequence motifs and structural motifs enriched within stress-responsive lncRNAs may also be responsible for the stress-responsive functions of lncRNAs, it will provide a new focus and strategy for lncRNA research. Taken together, we highlight the unique role of lncRNAs in integrating plant response to adverse environmental conditions with different aspects of plant growth and development. We envisage that an improved understanding of the mechanisms by which lncRNAs regulate plant stress response may further promote the development of unconventional approaches for breeding stress-resistant crops.

6.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499135

ABSTRACT

Stomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density. The expression analysis showed that stu-miR827 was obviously repressed by drought stresses and then rapidly increased after rewatering. Suppressing the expression of stu-miR827 transgenic potato lines showed an increase in stomatal density, correlating with a weaker drought resistance compared with wildtype potato lines. In addition, StWRKY48 was identified as the target gene of stu-miR827, and the expression of StWRKY48 was obviously induced by drought stresses and was greatly upregulated in stu-miR827 knockdown transgenic potato lines, suggesting its involvement in the drought stress response. Importantly, the expression of genes associated with stomata development, such as SDD (stomatal density and distribution) and TMM (too many mouths), was seriously suppressed in transgenic lines. Altogether, these observations demonstrated that suppression of stu-miR827 might lead to overexpression of StWRKY48, which may contribute to negatively regulating the drought adaptation of potato by increasing the stomatal density. The results may facilitate functional studies of miRNAs in the process of drought tolerance in plants.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Stomata/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Drought Resistance , Stress, Physiological/genetics , Droughts , Plant Leaves/metabolism , Water/metabolism
7.
Antioxidants (Basel) ; 11(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36290624

ABSTRACT

Superoxide dismutase (SOD) actively participates in the wound stress of plants. However, whether StMSD mediates the generation of H2O2 and the deposition of suberin polyphenolic and lignin at potato tuber wounds is elusive. In this study, we developed the StMSD interference expression of potato plants and tubers by Agrobacterium tumefaciens-mediated transformation. The StSOD expression showed a marked downregulation in StMSD-interference tubers, especially StCSD2 and StCSD3. The content of O2•- exhibited a noticeable increase together with the inhibition in H2O2 accumulation. Moreover, the gene expression levels of StPAL (phenylalanine ammonia-lyase) and StC4H (cinnamate-4-hydroxylase) were downregulated in StMSD-interference tubers, and less suberin polyphenolic and lignin depositions at the wounds were observed. Taken together, the interference expression of StMSD can result in less suberin polyphenolic and lignin deposition by inhibiting the disproportionation of O2•- to H2O2 and restraining phenylpropanoid metabolism in tubers.

8.
Front Plant Sci ; 13: 919243, 2022.
Article in English | MEDLINE | ID: mdl-36092392

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.

9.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35955930

ABSTRACT

Calcium-dependent protein kinases (CDPK) are implicated in signaling transduction in eukaryotic organisms. It is largely unknown whether StCDPK28 plays a role in the response to water deficiency and osmotic stress in potato plants (Solanum tuberosum L.). Potato cv. Zihuabai was cultivated under natural, moderate, and severe water deficiency conditions; to induce osmotic stress, potato plants were treated with 10% or 20% PEG. StCDPK28-overexpression and StCDPK28-knockdown plants were constructed. StCDPKs were evaluated by qRT-PCR. The subcellular location of the StCDPK28 protein was observed with confocal scanning laser microscopy. Phenotypic changes were indicated by photosynthetic activity, the contents of H2O2, MDA and proline, and the activities of CAT, SOD and POD. Results showed water deficiency and osmotic stress altered StCDPK expression patterns. StCDPK28 exhibited a membrane, cytosolic and nuclear localization. Water deficiency and osmotic stress induced StCDPK28 upregulation. Photosynthetic activity was enhanced by StCDPK28 overexpression, while decreased by StCDPK2 knockdown under water deficiency and osmotic stress. StCDPK28 overexpression decreased H2O2 and MDA, and increased proline, while StCDPK28 knockdown showed reverse results, compared with the wild type, in response to water deficiency and osmotic stress. StCDPK28 overexpression increased the activities of CAT, SOD and POD, while StCDPK28-knockdown plants indicated the reverse trend under water deficiency and osmotic stress conditions. Regulation of StCDPK28 expression could be a promising approach to improve the tolerance ability of potato plants in response to drought or high salt media.


Subject(s)
Solanum tuberosum , Droughts , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Osmotic Pressure , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Proline/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Solanum tuberosum/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism , Water/metabolism
10.
Plant Physiol Biochem ; 185: 279-289, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35724622

ABSTRACT

Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.


Subject(s)
Solanum tuberosum , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Solanum tuberosum/metabolism , Wound Healing/genetics
11.
Int J Mol Sci ; 23(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35008937

ABSTRACT

Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.


Subject(s)
MicroRNAs/metabolism , Plant Development , Plants/metabolism , Signal Transduction , Arabidopsis Proteins/metabolism , F-Box Proteins/metabolism , Gene Expression Regulation, Plant , Plants/genetics , Receptors, Cell Surface/metabolism
12.
Front Plant Sci ; 12: 737524, 2021.
Article in English | MEDLINE | ID: mdl-34868121

ABSTRACT

Reactive oxygen species (ROS) production is essential for both physiological processes and environmental stress in diverse plants. Previous studies have found that benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH)-inducible ROS were associated with wound healing of potato tubers. Calcium-dependent protein kinases (CDPKs), the important calcium receptors, are known to play a crucial part in plant development and adaptation to abiotic stresses. However, whether CDPK-mediated ROS generation induced by BTH is involved in wound healing is elusive. In this study, we measured Solanum tuberosum CDPKs (StCDPKs) expression using real-time PCR, and it was found that the transcriptional levels of StCDPKs from BTH-treated tissues were significantly induced, among which StCDPK14 presented the most increased level. Subcellular localization results showed that StCDPK14 is located in the nucleus and membrane. The transgenic potato plants and tubers were developed using interference-expression of StCDPK14 by Agrobacterium tumefaciens-mediated transformation. The St respiratory burst oxidase homologs (StRbohs) expression showed a remarkable decrease in StCDPK14 transgenic tubers, notably, H2O2 content and suberin deposition were also significantly declined. To confirm the relationship between StCDPK14 and StRbohB, yeast-two-hybrid and bimolecular fluorescence complementation were used to examine the interaction, and it was shown that StCDPK14 interacted with the specific Ca2 + -binding motif (helix-loop-helix, called EF-hand) of StRbohB N-terminus. The above results unraveled that StCDPK14 functions in ROS generation via interacting with StRbohB during wound healing of potato tubers.

13.
Front Plant Sci ; 12: 749688, 2021.
Article in English | MEDLINE | ID: mdl-34858457

ABSTRACT

The nuclear factor Y (NF-Y) family is comprised of transcription factors that have been implicated in multiple plant biological processes. However, little is known about this family in potato. In the present study, a total of 41 StNF-Y genes were identified in the potato genome. In addition, the phylogenetic, gene structure, motif, and chromosomal location of this family were analyzed. The tissue expression profiles based on RNA-seq data showed that 27 StNF-Y genes had tissue-specific expression, while the remaining 14 had low expression in all tissues. Publicly available transcriptomics data from various abiotic stresses revealed several stress-responsive StNF-Y genes, which were further verified via quantitative real-time polymerase chain reaction experiments. Furthermore, the StNF-YC9 gene was highly induced by dehydration and drought treatments. StNF-YC9 protein was mainly localized in the nucleus and cytoplasmic membrane. Overexpressing StNF-YC9 potato lines (OxStNF-YC9) had significantly increased in root length and exhibited stronger stomatal closure in potato treated by polyethylene-glycol and abscisic acid. In addition, OxStNF-YC9 lines had higher photosynthetic rates and decreased water loss under short-term drought stress compared to wild-type plants. During long-term drought stress, OxStNF-YC9 lines had higher proline levels, lower malondialdehyde content, and increased activity of several antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase. This study increased our understanding of the StNF-Y gene and suggested that StNF-YC9 played an important role in drought tolerance by increased the photosynthesis rate, antioxidant enzyme activity, and proline accumulation coupled to lowered malondialdehyde accumulation in potato.

14.
Int J Mol Sci ; 22(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34948331

ABSTRACT

The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor-responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.


Subject(s)
Genome, Plant/genetics , Osmotic Pressure/physiology , Plant Proteins/genetics , Solanum tuberosum/genetics , Stress, Physiological/genetics , Abscisic Acid/metabolism , Droughts , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genome-Wide Association Study/methods , Multigene Family/genetics , Phylogeny , Plant Development/genetics , Signal Transduction/genetics
15.
Plant Physiol Biochem ; 166: 939-949, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34247108

ABSTRACT

The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture. Herein, we demonstrated that potato miR160a/b acted as a critical regulator and affected plant root architecture by targeting the mRNA of StARF10 and StARF16 for cleavage. The miR160a/b precursor was cloned from potato. Quantitative PCR assays showed that the expression levels of miR160 and its targets were down- or up-regulated with the development of potato roots, respectively. Moreover, transgenic lines with suppressed stu-miR160 expression were established with the short tandem targets mimic (STTM), and the results showed that the ectopic expression of miR160a/b altered the levels of auxin and the expression of auxin signaling-related genes and caused drastic change in root architecture compared with that in control plants. Suppressing the expression of miR160 led to a severe reduction in root length, an increase in the number of lateral roots, and a decrease in fresh root weight in potato. Collectively, our data established a key role of miR160 in modulating plant root architecture in potato.


Subject(s)
MicroRNAs , Solanum tuberosum , Gene Expression Regulation, Plant , Indoleacetic Acids , MicroRNAs/genetics , Plant Roots/genetics , Signal Transduction , Solanum tuberosum/genetics
16.
Front Pharmacol ; 12: 645638, 2021.
Article in English | MEDLINE | ID: mdl-33935741

ABSTRACT

Background: Recent studies suggest that gut microbiota was associated with the bidirectional gut-brain axis which could modulate neuropsychological functions of the central nervous system. Gut microbiota could produce gamma aminobutyric acid (GABA) that could modulate the gut-brain axis response. Jianpi Jieyu (JPJY) decoction, a traditional Chinese formula, is mainly composed of Astragalus membranaxeus and Radix Pseudostellariae. Although the JPJY decoction has been used to treat the depression in China, the potential action of its antidepressant has not been well understood. Thus this study was aim to investigate the role of JPJY improve gut microbiota homeostasis in the chronic stress induced depressive mice. Methods: The antidepressant effect of JPJY on chronic unpredictable mild stress (CUMS) mice was evaluated by using sucrose preference test, tail suspension test and forced swim test. Fatigue-like behaviors were evaluated using degree of redness, grip strength test, and exhaustive swimming test. The new object recognition test was used to evaluate cognition performance. Fecal samples were collected and taxonomical analysis of intestinal microbial distribution was conducted with 16S rDNA. Serum level of GABA was measured using high performance liquid chromatography (HPLC). The expression of GluR1 and p-Tau protein in the hippocampus was determined using Western blotting. Results: The dose of 9.2 g/kg JPJY produced antidepressant-like effects. JPJY and its major components also modulated gut microbiota diversity in the CUMS mice. Serum level of GABA and the expressions of hippocampal GluR1 and p-Tau were reversed after the administration of JPJY in CUMS mice. Conclusion: JPJY regulates gut microbiota to produce antidepressant-like effect and improve cognition deficit in depressive mice while its molecular mechanism possibly be enhanced NR1 and Tau expression in hippocampus and increased GABA in serum.

17.
Plant Cell Rep ; 40(3): 491-506, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388892

ABSTRACT

KEY MESSAGE: StMAPK11 overexpression promotes potato growth, physiological activities and photosynthesis under drought conditions. Mitogen-activated protein kinases (MAPKs) are import regulators of MAPK pathway in plants under drought condition. However, the critical role in potato (Solanum tuberosum L.) drought resistance is not fully understood. In this study, we aimed to explore the role of StMAPK11 under drought stress. The result of RT-qPCR for assay of StMAPKs expression demonstrated that 15 StMAPKs were differentially expressed in leaves, flowers, petioles, stamens, pistils, stems, stolons, roots, tubers and tuber peels of potato. StMAPKs was dynamically modulated by abiotic stresses and plant hormone treatments, and StMAPK11 was apparently up-regulated under drought conditions. Therefore, the vectors pCPB-StMAPK11 and pCPBI121-miRmapk11 for over-expression and down-regulation of StMAPK11 were constructed, respectively, and introduced into potato cultivar Atlantic. The result showed that StMAPK11 promoted potato growth under drought conditions, as well as the physiological activities evidenced by changes in SOD, CAT and POD activity and H2O2, proline and MDA content. StMAPK11 up-regulation intensified drought resistance of potato plant by elevating antioxidant activities and photosynthesis. Moreover, we consolidated the protective role of StMAPK11 in tobacco and Arabidopsis against drought stress. The result could provide new insights into the function of StMAPK11 in drought response and its possible mechanisms.


Subject(s)
Droughts , Mitogen-Activated Protein Kinase 11/metabolism , Photosynthesis/physiology , Plant Proteins/metabolism , Solanum tuberosum/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Enzymes/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Mitogen-Activated Protein Kinase 11/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Proline/metabolism , Stress, Physiological , Nicotiana/genetics , Nicotiana/growth & development
18.
Biotechnol Appl Biochem ; 68(2): 366-380, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32374895

ABSTRACT

Ruan Jian Qing Mai formula (RJQM), a multicomponent herbal formula, has been widely used to treat peripheral arterial disease (PAD) in China. However, its active compounds and mechanisms of action are still unknown. First, RNA sequencing analysis of 15 healthy and 16 PAD samples showed that 524 PAD differential genes were significantly enriched in Go Ontology (ribonucleotide metabolic process, oxidoreductase complex, and electron transfer activity), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA pathways (OXPHOS and TCA cycle), miRNA (MIR183), and kinase (PAK6). Fifty-three active ingredients in RJQM had similar structures to the seven drug molecules in CLUE. Then, network topology analysis of the 53 components-target-pathway-disease network yielded 10 active ingredients. Finally, computational toxicity estimations showed that the median lethal dose (LD50) of the 10 active ingredients was above 1000 mg/kg, and eight of them did not cause hepatotoxicity, mutagenicity, carcinogenicity, cytotoxicity, and immunotoxicity nor activate 12 toxic pathways. In conclusion, RJQM has a protection effect on PAD by regulating a complex molecular network. Part of the mechanism is associated with the regulation of OXPHOS by 10 active components, which may alleviate mitochondrial dysfunction and pathological metabolic programming.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Peripheral Arterial Disease/prevention & control , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/metabolism
19.
Plant Physiol Biochem ; 156: 167-177, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32956929

ABSTRACT

Mitogen-activated protein kinase 3 (MAPK3) is involved in plant growth and development, as well as response to adverse stress. Here we aimed to explore the role of StMAPK3 in response to salt and osmosis stress. Polyethylene glycol (PEG) (5% and 10%) and mannitol (40 mM and 80 mM) were used to induce osmosis stress. To induce salinity stress, potato plant was cultured with NaCl (40 mM and 80 mM). StMAPK3 overexpression and RNA interference-mediated StMAPK3 knockdown were constructed to explore the role of StMAPK3 in potato growth, stomatal aperture size, activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and contents of H2O2, proline and malonaldehyde (MDA). Meanwhile, we detected transpiration, net photosynthesis, stomatal conductance, and water use efficiency. Subcellular location of StMAPK3 protein was also detected. PEG, mannitol and NaCl treatments induced the accumulation of StMAPK3 mRNA in potato plants. StMAPK3 protein was located on the membrane and nucleus. Abnormal expression of StMAPK3 changed potato phenotypes, enzyme activity of SOD, CAT and POD, as well as H2O2, proline and MDA contents under osmosis and salinity stress. Photosynthesis and stomatal aperture were regulated by StMAPK3 in potato treated by PEG, mannitol and NaCl. Modulation of potato phenotypes and physiological activity indicates StMAPK3 as a regulator of osmosis and salinity tolerance.


Subject(s)
Mitogen-Activated Protein Kinase 3/physiology , Osmosis , Plant Proteins/physiology , Salinity , Solanum tuberosum , Stress, Physiological , Antioxidants/physiology , Hydrogen Peroxide , Mitogen-Activated Protein Kinase 3/genetics , Photosynthesis , Plant Proteins/genetics , Plant Stomata/physiology , Solanum tuberosum/enzymology , Solanum tuberosum/genetics
20.
Biomed Pharmacother ; 129: 110281, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32554251

ABSTRACT

Qingfei Paidu decoction (QFPD), a multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active compounds and mechanisms of action are still unknown. Firstly, we divided QFPD into five functional units (FUs) according to the compatibility theory of traditional Chinese medicine. The corresponding common targets of the five FUs were all significantly enriched in Go Ontology (oxidoreductase activity, lipid metabolic process, homeostatic process, etc.), KEGG pathways (steroid biosynthesis, PPAR signaling pathway, adipocytokine signaling pathway, etc.), TTD diseases (chronic inflammatory diseases, asthma, chronic obstructive pulmonary Disease, etc.), miRNA (MIR183), kinase (CDK7) and TF (LXR). QFPD contained 257 specific targets in addition to HCoV, pneumonia and ACE2 co-expression proteins. Then, network topology analysis of the five components-target-pathway-disease networks yielded 67 active ingredients. In addition, ADMET estimations showed that 20 compounds passed the stringent lead-like criteria and in silico drug-likeness test with high gastrointestinal absorption and the median lethal dose (LD50 > 1600 mg/kg). Moreover, 4 specific ingredients (M3, S1, X2 and O2) and 5 common ingredients (MS1, MX16, SX1, WO1 and XO1) of QFPD presented good molecular docking score for 2019-nCov structure and non-structure proteins. Finally, drug perturbation of COVID-19 network robustness showed that all five FUs may protect COVID-19 independently, and target 8 specifically expressed drug-attacked nodes which were related to the bacterial and viral responses, immune system, signaling transduction, etc. In conclusion, our new FUNP analysis showed that QFPD had a protection effect on COVID-19 by regulating a complex molecular network with safety and efficacy. Part of the mechanism was associated with the regulation of anti-viral, anti-inflammatory activity and metabolic programming.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 , Computer Simulation , Coronavirus Infections/virology , Drugs, Chinese Herbal/administration & dosage , Humans , Lethal Dose 50 , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/virology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...