Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
2.
Cell Rep ; 42(11): 113352, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37948180

ABSTRACT

By sorting receptor tyrosine kinases into endolysosomes, the endosomal sorting complexes required for transport (ESCRTs) are thought to attenuate oncogenic signaling in tumor cells. Paradoxically, ESCRT members are upregulated in tumors. Here, we show that disruption of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a pivotal ESCRT component, inhibited tumor growth by promoting CD8+ T cell infiltration in melanoma and colon cancer mouse models. HRS ablation led to misfolded protein accumulation and triggered endoplasmic reticulum (ER) stress, resulting in the activation of the type I interferon pathway in an inositol-requiring enzyme-1α (IRE1α)/X-box binding protein 1 (XBP1)-dependent manner. HRS was upregulated in tumor cells with high tumor mutational burden (TMB). HRS expression associates with the response to PD-L1/PD-1 blockade therapy in melanoma patients with high TMB tumors. HRS ablation sensitized anti-PD-1 treatment in mouse melanoma models. Our study shows a mechanism by which tumor cells with high TMB evade immune surveillance and suggests HRS as a promising target to improve immunotherapy.


Subject(s)
Melanoma , Protein Serine-Threonine Kinases , Mice , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Proteostasis , Tumor Escape , Melanoma/pathology , Endosomal Sorting Complexes Required for Transport/metabolism , Interferons/metabolism
3.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685910

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , ErbB Receptors/genetics , rab27 GTP-Binding Proteins
4.
Oral Dis ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154262

ABSTRACT

OBJECTIVE: Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs. SUBJECTS AND METHODS: Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study. sEVs were isolated from both fresh lesions and cell supernatant, and were examined by western blotting, nanoparticle tracking analysis and transmission electron microscopy. Western blot analysis, immunohistochemistry and immunofluorescence were adopted to screening candidate regulator of sEV size. Specific inhibitors and siRNA were employed to validate the role of dysregulated p-AKT/vacuolar protein sorting-associated protein 4B (VPS4B) signaling on the size of sEVs in endothelial cells. RESULTS: The size of sEVs derived from both VM lesion tissues and cell model was significantly increased. VPS4B, whose expression level was mostly significantly downregulated in VM endothelial cells, was responsible for the size change of sEVs. Targeting abnormal AKT activation corrected the size change of sEVs by recovering the expression level of VPS4B. CONCLUSION: Downregulated VPS4B in endothelial cells, resulted from abnormally activated AKT signaling, contributed to the increased size of sEVs in VMs.

5.
Cleft Palate Craniofac J ; : 10556656231174433, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37165772

ABSTRACT

OBJECTIVE: Taking advantage of the broad coverage of Wireless Application Protocol (WAP), we developed a Content Management System (CMS)-programmed mobile learning application. This application can help the undergraduate to obtain a comprehensive understanding of concepts in Cleft lip and palate Phenotype, and Embryonic development (CPE). The present study aims to evaluate the feasibility and efficacy of the concept acquisition teaching model on the basis of WAP in a practical undergraduate course of CPE. DESIGN: The concept acquisition teaching model based on WAP was programmed by CMS, covering definitions of various cleft lip and palate, the mechanisms underlying the phenotypes, practical medical cases, as well as corresponding tests after learning. SETTING: The CPE concept acquisition teaching model was distributed to a total of 524 undergraduate students and 46 tutors participated in CPE teaching from seven highly ranked schools of stomatology in China since April 2022. PARTICIPANTS: 524 undergraduate students and 46 tutors from seven highly ranked schools of stomatology in China. INTERVENTIONS: The CPE concept acquisition teaching model. MAIN OUTCOME MEASURES: The effectiveness of the CPE teaching model. RESULTS: The response rate to the survey was 100%. The grading of the questionnaires indicated that the students were satisfied with the usability, practicality, and outcome, whereas the tutors were more positive with the contents, cooperation, and outcome. CONCLUSIONS: The present study demonstrated the feasibility and efficacy of the WAP-based concept acquisition teaching model of CPE and a high level of satisfaction among undergraduate students and tutors who major in Stomatology.

6.
Plast Reconstr Surg ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-37257150

ABSTRACT

OBJECTIVES: We aimed to report a hitherto undescribed class of patients with the obvious phenotype of a novel soft palate dysplasia combining unilateral soft palate hypoplasia with a fully developed uvula. We also aimed to investigate and evaluate the corresponding surgical approaches. MATERIALS AND METHODS: Twelve patients were clinically diagnosed with soft palate dysplasia. Clinical examination, including radiographic tests was performed to characterize the congenital deformity. The effectiveness of velopharyngeal closure and speech were tested pre- and post-operation. RESULTS: Soft palate dysplasia was featured with velopharyngeal insufficiency, food regurgitation, and speech disorders. It was commonly manifested as structural deformities of the soft palate, tongue palatine arch, pharyngeal palatine arch, and pterygomandibular fold, but complete uvula shape. According to radiographic analysis, in five patients the lateral pterygoid processes were poorly developed and other malformations were present. Velopharyngoplasty based on the unilateral posterior pharyngeal flap can well restore the velopharyngeal closure and speech intelligibility without respiration obstruction. CONCLUSIONS: Soft palate dysplasia is characterized as congenital velopharyngeal insufficiency manifested as a primary soft palate defect. It is highly associated with other physical deformities but independent of conventionally known syndromes. The cause may be an abnormal development of the pterygoid process. Unilateral velopharyngoplasty based on the posterior pharyngeal flap is a great technique to repair soft palate dysplasia (SPD).Clinical Relevance For soft palate muscle defects without cleft palate, we proposed a surgical technique by which personalized design of the posterior pharyngeal flap could be fulfilled according to the degree of deformity. It can restore the symmetry of the soft palate.

7.
Arch Oral Biol ; 151: 105696, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086494

ABSTRACT

OBJECTIVE: The poor survival rate of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent human cancer, is attributed to frequent locoregional recurrence and lymph node metastases. Though it is reported that the expression of ALG-2 interacting protein X (ALIX) closely correlates with the progression of various tumors, its role in HNSCC remains unclear. The present study aims to investigate the role of ALIX in the development of HNSCC. DESIGN: With immunohistochemical staining, the expression levels of ALIX and series of related functional proteins were compared in normal mucosal (n = 18), HNSCC tissues (n = 54), and metastatic lymph nodes (n = 11). Further, the correlation analysis was performed among the proteins detected. By knocking down ALIX in HNSCC cell lines, the correlation of ALIX with the proteins was verified in vitro. The role of ALIX in proliferation, migration, and invasion of HNSCC cells was further studied by flow cytometry, wounding healing, and transwell assays, respectively. RESULTS: Higher expression level of ALIX was revealed in HNSCC samples, especially in metastatic lymph nodes, than in normal mucosal tissues. Accordingly, increasing levels of MMP9, MMP14, and VEGF-C were also discovered in metastatic lymph nodes and significantly correlated with the expression of ALIX. In vitro assays demonstrated that the knockdown of ALIX reduced both the transcriptional and protein levels of MMP9, MMP14, and VEGF-C, together with suppressed migration and weakened invasion of HNSCC cell lines. CONCLUSIONS: ALIX up-regulated the expression of MMP9, MMP14 and VEGF-C, and promoted migration and invasion of HNSCC cells.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Matrix Metalloproteinase 14 , Matrix Metalloproteinase 9/metabolism , Neoplasm Recurrence, Local , Squamous Cell Carcinoma of Head and Neck , Vascular Endothelial Growth Factor C
8.
Cleft Palate Craniofac J ; 60(2): 225-232, 2023 02.
Article in English | MEDLINE | ID: mdl-34787508

ABSTRACT

Objectives: To present the use of dynamic navigation system in the repair of alveolar cleft. Patients and Participants: A total of three non-syndromic patients with unilateral alveolar cleft were involved in this study. Real-time computer-aided navigation were used to achieve restoration and reconstruction with standardized surgical technique. Methods: With the individual virtual 3-dimensional (3-D) modeling based on computed tomography (CT) data, preoperative planning and surgical simulation were carried out with the navigation system. During preoperative virtual planning, the defect volume or the quantity of graft is directly assessed at the surgical region. With the use of this system, the gingival periosteum flap incision can be tracked in real-time, and the bone graft can be navigated under the guidance of the 3-D views until it matches the preoperatively planned position. Results: Three patients with alveolar cleft were successfully performed under navigation guidance. Through the model alignment procedure, accurate matches between the actual intraoperative position and the CT images were achieved within the systematic error of 0.3 mm. The grafted bone was implanted according to the preoperative plan with the aid of instrument- and probe-based navigation. All the patients were healed well without serious complications. Conclusions: These findings suggest that image-guided surgical navigation, including preoperative planning, surgical simulation, postoperative assessment, and computer-assisted navigation was feasible and yielded good clinical outcomes. Clinical relevance: This dynamic navigation could be proved to be a valuable option for this complicated surgical procedure in the management of alveolar cleft repair.


Subject(s)
Maxilla , Surgical Flaps , Tomography, X-Ray Computed , Humans , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Maxilla/surgery
9.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(6): 713-718, 2023 Dec 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597038

ABSTRACT

OBJECTIVES: The clinical effects and surgical procedures of Hogan posterior pharyngeal flap in the treatment of the older patients with velopharyngeal insufficiency (VPI) after cleft palate repair were investigated. METHODS: A total of 33 patients (aged 10-35 years; average of 20.4 years) with VPI secondary to cleft palate were included. They underwent Hogan posterior pharyngeal flap to improve velopharyngeal closure function. The clinical efficacy of the ope-ration was evaluated with Chinese speech clarity measurement and nasopharyngeal fiberscope (NPF), and the velopharyngeal closure was graded. The average follow-up time was 13.3 months. RESULTS: The wounds of all patients were healed by first intention, and speech assessment showed that the consonant articulation increased and the rate of hypernasality and nasal emission decreased significantly (P<0.05). NPF examination showed that the postoperative velopharyngeal closure function significantly improved, 30 cases (91%) were gradeⅠ, and 3 cases (9%) were grade Ⅱ. CONCLUSIONS: Hogan posterior pharyngeal flap for VPI secondary to cleft palate can significantly improve velopharyngeal closure.


Subject(s)
Cleft Palate , Velopharyngeal Insufficiency , Humans , Aged , Velopharyngeal Insufficiency/surgery , Cleft Palate/surgery , Cleft Palate/complications , Surgical Flaps , Pharynx/surgery , Treatment Outcome , Speech
10.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G571-G585, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36194131

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Humans , Mice , Animals , Extracellular Vesicles/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology
11.
Cell Tissue Res ; 389(3): 517-530, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35786766

ABSTRACT

Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated. Our previous studies revealed drastically elevated extracellular vesicle (EV) secretion in VM lesions. Here, we identified increased EV-carried MMP14 in lesion fluids of VMs and culture medium of TIE2-L914F mutant endothelial cells (ECs), along with stronger ECM degradation. Knockdown of RAB27A, a required regulator for vesicle docking and fusion, led to decreased secretion of EV-carried MMP14 in vitro. Histochemical analysis further demonstrated a highly positive correlation between RAB27A in the endothelium and MMP14 in the perivascular environment. Therefore, our results proved that RAB27A-regulated secretion of EV-MMP14, as a new pattern of endothelium-ECM interplay, contributed to the development of VMs by promoting ECM degradation.


Subject(s)
Extracellular Vesicles , Matrix Metalloproteinase 14/metabolism , Vascular Malformations , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , Humans , Vascular Malformations/metabolism , Vascular Malformations/pathology
12.
Dev Cell ; 57(3): 329-343.e7, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35085484

ABSTRACT

Tumor-derived extracellular vesicles (TEVs) suppress the proliferation and cytotoxicity of CD8+ T cells, thereby contributing to tumor immune evasion. Here, we report that the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) co-localizes with programmed death ligand 1 (PD-L1) on the exosomes; both ICAM-1 and PD-L1 are upregulated by interferon-γ. Exosomal ICAM-1 interacts with LFA-1, which is upregulated in activated T cells. Blocking ICAM-1 on TEVs reduces the interaction of TEVs with CD8+ T cells and attenuates PD-L1-mediated suppressive effects of TEVs. During this study, we have established an extracellular vesicle-target cell interaction detection through SorTagging (ETIDS) system to assess the interaction between a TEV ligand and its target cell receptor. Using this system, we demonstrate that the interaction of TEV PD-L1 with programmed cell death 1 (PD-1) on T cells is significantly reduced in the absence of ICAM-1. Our study demonstrates that ICAM-1-LFA-1-mediated adhesion between TEVs and T cells is a prerequisite for exosomal PD-L1-mediated immune suppression.


Subject(s)
Exosomes/metabolism , Immunosuppression Therapy , Intercellular Adhesion Molecule-1/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion/drug effects , Cell Communication/drug effects , Cell Line, Tumor , Disease Models, Animal , Exosomes/drug effects , Exosomes/ultrastructure , Interferon-gamma/pharmacology , Melanoma/pathology , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Protein Binding/drug effects , Up-Regulation/drug effects
13.
Int J Cancer ; 145(5): 1358-1370, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30785217

ABSTRACT

Tumor angiogenesis is critical for tumor progression as the new blood vessels supply nutrients and facilitate metastasis. Previous studies indicate tumor associated lymphocytes, including B cells and T cells, contribute to tumor angiogenesis and tumor progression. The present study aims to identify the function of Lymphotoxin-α (LT-α), which is secreted by the activated lymphocytes, in the tumor angiogenesis of head and neck squamous cell carcinoma (HNSCC). The coculture system between HNSCC cell line Cal27 and primary lymphocytes revealed that tumor cells promoted the LT-α secretion in the cocultured lymphocytes. In vitro data further demonstrated that LT-α promoted the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) by enhancing the PFKFB3-mediated glycolytic flux. Genetic and pharmacological inhibition of PFKFB3 suppressed the enhanced proliferation and migration of HUVECs. We further identified that LT-α induced PFKFB3 expression was dependent on the TNFR/NF-κB signaling pathway. In addition, we proved that PFKFB3 blockade decreased the density of CD31 positive blood vessels in HNSCC xenografts. Finally, the results from the human HNSCC tissue array revealed that the expression of LT-α in HNSCC samples positively correlated with microvessel density, lymphocytes infiltration and endothelial PFKFB3 expression. In conclusion, infiltrated lymphocyte secreted LT-α enhances the glycolysis of ECs in a PFKFB3-dependent manner through the classical NF-κB pathway and promotes the proliferation and migration of ECs, which may contribute to the aberrant angiogenesis in HNSCCs. Our study suggests that PFKFB3 blockade is a promising therapeutic approach for HNSCCs by targeting tumor angiogenesis.


Subject(s)
Head and Neck Neoplasms/blood supply , Lymphotoxin-alpha/metabolism , Phosphofructokinase-2/metabolism , Squamous Cell Carcinoma of Head and Neck/blood supply , Animals , B-Lymphocytes/metabolism , Cell Cycle/physiology , Coculture Techniques , Female , Glycolysis , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating , Lymphotoxin-alpha/biosynthesis , Lymphotoxin-alpha/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , T-Lymphocytes/metabolism , Up-Regulation
14.
Nature ; 560(7718): 382-386, 2018 08.
Article in English | MEDLINE | ID: mdl-30089911

ABSTRACT

Tumour cells evade immune surveillance by upregulating the surface expression of programmed death-ligand 1 (PD-L1), which interacts with programmed death-1 (PD-1) receptor on T cells to elicit the immune checkpoint response1,2. Anti-PD-1 antibodies have shown remarkable promise in treating tumours, including metastatic melanoma2-4. However, the patient response rate is low4,5. A better understanding of PD-L1-mediated immune evasion is needed to predict patient response and improve treatment efficacy. Here we report that metastatic melanomas release extracellular vesicles, mostly in the form of exosomes, that carry PD-L1 on their surface. Stimulation with interferon-γ (IFN-γ) increases the amount of PD-L1 on these vesicles, which suppresses the function of CD8 T cells and facilitates tumour growth. In patients with metastatic melanoma, the level of circulating exosomal PD-L1 positively correlates with that of IFN-γ, and varies during the course of anti-PD-1 therapy. The magnitudes of the increase in circulating exosomal PD-L1 during early stages of treatment, as an indicator of the adaptive response of the tumour cells to T cell reinvigoration, stratifies clinical responders from non-responders. Our study unveils a mechanism by which tumour cells systemically suppress the immune system, and provides a rationale for the application of exosomal PD-L1 as a predictor for anti-PD-1 therapy.


Subject(s)
B7-H1 Antigen/immunology , Exosomes/metabolism , Immune Tolerance/immunology , Melanoma/immunology , Programmed Cell Death 1 Receptor/immunology , Tumor Escape/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/blood , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Cell Line, Tumor , Disease Progression , Female , Humans , Immune Tolerance/drug effects , Interferon-gamma/blood , Interferon-gamma/immunology , Melanoma/drug therapy , Melanoma/pathology , Mice , Mice, Nude , Neoplasm Metastasis , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
15.
Am J Pathol ; 187(11): 2602-2615, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28837798

ABSTRACT

Formation of inflammation-related tertiary lymphoid organs promotes human lymphatic malformation (LM) development. However, the role of lymphotoxins (LTs) and LT-related inducible ligand, the crucial mediators for tertiary lymphoid organ formation, is undetermined in LMs. Herein, we show that LTs and LT-related inducible ligand promote LM development by enhancing lymphatic endothelial cell (LEC) proliferation via activating NF-κB pathways. The expression of LTs and their receptors was increased in LMs, especially the infected ones, when compared with normal skins. Nuclear translocation of p65, p52, and RelB in the LECs of LMs indicated the activation of classic and alternative NF-κB pathways. Pearson's correlation and cluster analysis suggested the close relationship between LEC proliferation and NF-κB activation. Moreover, in vitro data demonstrated LTs accelerated the proliferation of human dermal LECs (HdLECs) through activation of NF-κB. In addition, lipopolysaccharide (LPS) up-regulated LT receptor expression in HdLECs, leading to increased sensitivity to LTs. Suppression of LT receptors hampered LPS-enhanced HdLEC proliferation, indicating the crucial role of LT pathways in inflammatory lymphangiogenesis. Besides, evidence from the LM rat models demonstrated LTα and LPS enhanced LEC proliferation, therefore promoting LM development. Blocking LT pathways by neutralizing antibodies against LTα and lymphotoxin ß receptor may decelerate the growth of the disease. In summary, our present study demonstrated activation of LT signaling pathways in LECs contributed to the progression of LMs.


Subject(s)
Cell Proliferation , Endothelium, Lymphatic/metabolism , Lymphangiogenesis , Lymphatic Vessels/metabolism , Cell Proliferation/drug effects , Disease Progression , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Lymphatic/drug effects , Humans , Lipopolysaccharides/pharmacology , Lymphangiogenesis/drug effects , Lymphatic Vessels/drug effects , Lymphatic Vessels/pathology , Lymphotoxin-alpha/metabolism , Up-Regulation
16.
Hum Pathol ; 65: 231-238, 2017 07.
Article in English | MEDLINE | ID: mdl-28552828

ABSTRACT

Lymphatic malformations (LMs) are composed of aberrant lymphatic vessels and regarded as benign growths of the lymphatic system. Recent studies have demonstrated that the mutant embryos of PKD1 and PKD2, encoding polycystin-1 (PC-1) and polycystin-2 (PC-2), respectively, result in aberrant lymphatic vessels similar to those observed in LMs. In this study, for the first time, we investigated PC-1 and PC-2 expression and assessed their roles in the development of LMs. Our results demonstrated that PC-1 and PC-2 gene and protein expressions were obviously decreased in LMs compared with normal skin tissues. In addition, the expression of phosphorylated ERK but not total ERK was up-regulated in LMs and negatively correlated with the expression of PC-1 and PC-2. Moreover, up-regulation of Ki67 was detected in LMs and positively correlated with ERK phosphorylation levels. Furthermore, cluster analysis better reflected close correlation between these signals. All of the above results provided strong evidence suggesting that the hyperactivation of the ERK pathway may be caused by down-regulation of PC-1 and PC-2 in LMs, contributing to increased proliferation of lymphatic endothelial cells in LMs. Our present study sheds light on novel potential mechanisms involved in LMs and may help to explore novel treatments for LMs.


Subject(s)
Cell Proliferation , Endothelial Cells/chemistry , Endothelium, Lymphatic/chemistry , Lymphangiogenesis , Lymphatic Vessels/chemistry , TRPP Cation Channels/analysis , Biomarkers/analysis , Case-Control Studies , Cluster Analysis , Down-Regulation , Endothelial Cells/pathology , Endothelium, Lymphatic/abnormalities , Extracellular Signal-Regulated MAP Kinases/analysis , Fluorescent Antibody Technique , Humans , Ki-67 Antigen/analysis , Lymphatic Vessels/abnormalities , Phosphorylation , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , TRPP Cation Channels/genetics
17.
J Exp Clin Cancer Res ; 36(1): 7, 2017 01 07.
Article in English | MEDLINE | ID: mdl-28061878

ABSTRACT

BACKGROUND: Many cancers including head and neck squamous cell carcinoma (HNSCC) are characterized by a metabolic rewiring with increased glucose uptake and lactate production, termed as aerobic glycolysis. Targeting aerobic glycolysis presents a promising strategy for cancer therapy. This study investigates the therapeutic potential of glycolysis blockage by targeting phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) in HNSCC. METHODS: 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) was used as a selective antagonist of PFKFB3. Glycolytic flux was determined by measuring glucose uptake, lactate production and ATP yield. PFKFB3 expression was examined using HNSCC tissue arrays. Cell proliferation, apoptosis and motility were analysed. HNSCC xenograft mouse model and metastasis mouse model were established to examine the therapeutic efficacy of PFK15 in vivo. RESULTS: HNSCC showed an increased PFKFB3 expression compared with adjacent mucosal tissues (P < 0.01). Targeting PFKFB3 via PFK15 significantly reduced the glucose uptake, lactate production and ATP generation in HNSCC cell lines. PFK15 suppressed cell proliferation, halted cell cycle progression and induced cell apoptosis. The invadopodia of HNSCC cells was markedly reduced after PFK15 treatment, thereby impairing cell motility and extracellular matrix degradation ability. The in vivo data from the xenograft mice models proved that PFK15 administration suppressed the tumor growth. And the results from the metastatic mice models showed administration of PFK15 alleviated the lung metastasis of HNSCC and extended the life expectancy of mice. CONCLUSIONS: The pharmacological inhibition of PFKFB3 via PFK15 suppressed tumor growth and alleviated metastasis in HNSCC, offering a promising strategy for cancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Squamous Cell/drug therapy , Glycolysis/drug effects , Head and Neck Neoplasms/drug therapy , Hydroquinones/administration & dosage , Phosphofructokinase-2/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Head and Neck Neoplasms/metabolism , Humans , Hydroquinones/pharmacology , Lactic Acid/metabolism , Mice , Neoplasm Metastasis , Squamous Cell Carcinoma of Head and Neck , Tissue Array Analysis , Xenograft Model Antitumor Assays
18.
Oncotarget ; 7(52): 87037-87051, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27888616

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) represents the most frequent malignancy in the head and neck region, and the survival rate has not been improved significantly over the past three decades. It has been reported the infiltrated macrophages contribute to the malignant progression of HNSCC. However, the crosstalk between macrophages and cancer cells remains poorly understood. In the present study, we explored interactions between monocytes/macrophages and HNSCC cells by establishing the direct co-culture system, and found that the crosstalk promoted the migration and invasion of cancer cells by enhancing the invadopodia formation through a CCL2/EGF positive feedback loop. Our results demonstrated HNSCC cells educated monocytes into M2-like macrophages by releasing C-C motif chemokine ligand 2 (CCL2, or MCP-1). And the M2-like macrophages secreted epithelial growth factor (EGF), which increased the motility of HNSCC cells by enhancing the invadopodia formation. These subcellular pseudopodia degraded extracellular matrix (ECM), facilitating tumor local invasion and distant metastasis. Moreover, EGF up-regulated CCL2 expression in HNSCC cells, which recruited monocytes and turned them into M2-like macrophages, thus forming a positive feedback paracrine loop. Finally, we reported that curcumin, a powerful natural drug, suppressed the production of EGF and CCL2 in macrophages and cancer cells, respectively, blocking the feedback loop and suppressing the migration and invasion of HNSCC cells. These results shed light on the possibilities and approaches based on targeting the crosstalk between cancer cells and monocytes/macrophages in HNSCC for potential cancer therapy.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cell Communication , Chemokine CCL2/physiology , Epidermal Growth Factor/physiology , Head and Neck Neoplasms/pathology , Macrophages/physiology , Carcinoma, Squamous Cell/drug therapy , Cell Differentiation , Cell Movement , Cell Polarity , Curcumin/pharmacology , Feedback, Physiological , Head and Neck Neoplasms/drug therapy , Humans , Monocytes/physiology , Neoplasm Invasiveness , Squamous Cell Carcinoma of Head and Neck
SELECTION OF CITATIONS
SEARCH DETAIL
...