Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Virology ; 595: 110093, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692134

ABSTRACT

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.

2.
Article in English | MEDLINE | ID: mdl-38686647

ABSTRACT

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

3.
J Mater Chem B ; 12(13): 3191-3208, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497358

ABSTRACT

Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Precision Medicine , Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use
4.
EPMA J ; 15(1): 67-97, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463626

ABSTRACT

Relevance: The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome's regulatory function is closely associated with the disease's pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods: This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan-Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters. Results: This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin-proteasome system for degradation. Conclusions: Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00352-w.

5.
Oncogene ; 43(16): 1190-1202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409551

ABSTRACT

Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.


Subject(s)
Adenocarcinoma of Lung , Transcription Factors , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Cell Proliferation/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Transcription Factors/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitination
6.
iScience ; 27(2): 108956, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318386

ABSTRACT

B7-H3 is a common oncogene found in various cancer types. However, the molecular mechanisms underlying abnormal B7-H3 expression and colorectal cancer (CRC) progression need to be extensively explored. B7-H3 was upregulated in human CRC tissues and its abnormal expression was correlated with a poor prognosis in CRC patients. Notably, gain- and loss-of-function experiments revealed that B7-H3 knockdown substantially inhibited cell proliferation, migration, and invasion in vitro, whereas exogenous B7-H3 expression yielded contrasting results. In addition, silencing of B7-H3 inhibited tumor growth in a xenograft mouse model. Mechanistically, our study demonstrated that the N6-methyladenosine (m6A) binding protein YTHDF1 augmented B7-H3 expression in an m6A-dependent manner. Furthermore, rescue experiments demonstrated that reintroduction of B7-H3 considerably abolished the inhibitory effects on cell proliferation and invasion induced by silencing YTHDF1. Our results suggest that the YTHDF1-m6A-B7-H3 axis is crucial for CRC development and progression and may represent a potential therapeutic target for CRC treatment.

7.
Mol Biol Rep ; 51(1): 205, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270700

ABSTRACT

Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strategies targeting p53 protein.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Genes, p53 , Neoplasms/genetics , Cognition , Genomic Instability , Tumor Microenvironment/genetics
8.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38221726

ABSTRACT

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Subject(s)
Boron Neutron Capture Therapy , Boron , Boron Neutron Capture Therapy/methods , Relative Biological Effectiveness , Neutrons
9.
Environ Res ; 241: 117606, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37951378

ABSTRACT

The formation of stable and mature biofilms affects the efficient and stable removal of ammonium by biological activated carbon (BAC). In this study, the new granular activated carbon (GAC) was preloaded with the carbon source (glucose and sucrose) and nano manganese dioxide (nMnO2) before using. Then tests were performed to determine whether substrate preloading promoted ammonium removal. The ammonium removal treated by nMnO2 coupled with sucrose-loaded BAC reached 49.1 ± 2.5%, which was 1.7 times higher than that by the nonloaded BAC 28.2 ± 1.9%). The biomass on the substrate-loaded BAC reached 5.83 × 106-1.22 × 107 cells/g DW GAC on Day 7, which was 4.6-9.5 times higher than the value of the nonloaded BAC (1.28 × 106 cells/g DW GAC). The amount of extracellular polymer (i.e., protein) on nMnO2 coupled to sucrose-loaded BAC was promoted significantly. Flavobacterium (0.7%-11%), Burkholderiaceae (13%-20%) and Aquabacterium (30%-67%) were the dominant functional bacteria on the substrate-loaded BAC, which were conducive to the nitrification or denitrification process. The results indicated that loading nMnO2 and/or a carbon source accelerated the formation of biofilms on BAC and ammonium removal. Additionally, the ammonium removal treated by nMnO2 coupled with sucrose-loaded BAC was contributed by microbial degradation (56.0 ± 2.5%), biofilm adsorption (38.7 ± 2.1%) and GAC adsorption (5.3 ± 0.3%), suggesting a major role of microbial degradation.


Subject(s)
Ammonium Compounds , Water Purification , Charcoal , Nitrification , Biofilms , Sucrose , Water Purification/methods
10.
Front Physiol ; 14: 1264208, 2023.
Article in English | MEDLINE | ID: mdl-37781230

ABSTRACT

In order to understand the effects of fermented Astragalus membranaceus (FAM) on the liver and intestinal health of tiger grouper (Epinephelus fuscoguttatus), this study was conducted. This study evaluates the effects of different levels of FAM on liver and intestinal tissue structure, serum biochemical parameters, intestinal digestive enzyme, and microbiota structure of tiger grouper. Fish were fed with diets (crude protein ≥ 48.0%, crude fat ≥ 10.0%) with five levels of FAM (L1:0.25%, L2: 0.5%, L3: 1%, L4: 2% and L5: 4%) in the experimental groups and a regular diet was used as the control (L0: 0%) for 8 weeks. Compared with AM, the protein content of FAM was significantly changed by 34.70%, indicating that a large amount of bacterial protein was produced after AM fermentation, and its nutritional value was improved. FAM had significant effects on the growth performance of tiger grouper (p < 0.05). The high-density lipoprotein cholesterol (HDL-C) was highest in L4 group, being significantly different from L0 group. The area and diameter of hepatocytes were lowest in L3 and L4, and the density of hepatocyte was highest in L4 group and relatively decreased in L5 group. The mucosal height and muscular thickness were highest in L3 group. The intestinal microbiota structure of tiger grouper was changed under the intervention of FAM. The lower abundance of potential pathogenic bacteria and higher abundance of probiotics colonization in the L4 group showed that the dose of FAM had the best effect on improving the health of intestinal microbiota. This study indicates that the addition of FAM in the feed contributes to liver health, improves intestinal morphology, and regulates the intestinal microbiota of tiger grouper. The addition ratio of 1%-2% is better for intestinal and liver health, and a high addition ratio will cause liver damage. Our work will provide a reference for the addition and management of FAM in the aquaculture industry.

11.
Biochem Pharmacol ; 218: 115864, 2023 12.
Article in English | MEDLINE | ID: mdl-37863330

ABSTRACT

Investigating the role of ubiquitin-specific peptidase 10 (USP10) in triple-negative breast cancer (TNBC). Analyzed USP10 expression levels in tumors using public databases. Detected USP10 mRNA and protein levels in cell lines. Examined USP10 expression in tumor tissues from breast cancer patients. Conducted USP10 knockdown experiments and analyzed changes in cell proliferation and metastasis. Confirmed protein-protein interactions with USP10 through mass spectrometry, Co-IP, and fluorescence experiments. Assessed impact of USP10 on transcription factor 4 (TCF4) ubiquitination and validated TCF4's influence on TNBC cells. We initially identified a pronounced overexpression of USP10 across multiple tumor types, including TNBC. Subsequently, we observed a conspicuous upregulation of USP10 expression levels in breast cancer cell lines compared to normal breast epithelial cells. However, upon subsequent depletion of USP10 within cellular contexts, we noted a substantial attenuation of malignant proliferation and metastatic potential in TNBC cells. In subsequent experimental analyses, we elucidated the physical interaction between USP10 and the transcription factor TCF4, whereby USP10 facilitated the deubiquitination modification of TCF4, consequently promoting its protein stability and contributing to the initiation and progression of TNBC. Collectively, this study demonstrates that USP10 facilitated the deubiquitination modification of TCF4, consequently promoting its protein stability and contributing to the initiation and progression of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Transcription Factor 4/genetics , Transcription Factor 4/metabolism , Ubiquitination , Epithelial Cells/metabolism , Up-Regulation , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Ubiquitin Thiolesterase/genetics
12.
Front Endocrinol (Lausanne) ; 14: 1220108, 2023.
Article in English | MEDLINE | ID: mdl-37795365

ABSTRACT

The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.


Subject(s)
Lung Neoplasms , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Lung Neoplasms/drug therapy , Ubiquitination , Ubiquitin/metabolism , Proteins/metabolism , Cell Transformation, Neoplastic , Drug Discovery
13.
Zool Res ; 44(6): 1003-1014, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37759335

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity. However, the precise mechanisms responsible for the combined impact of corona virus disease 2019 (COVID-19) and diabetes have not yet been elucidated, and effective treatment options for SARS-CoV-2-infected diabetic patients remain limited. To investigate the disease pathogenesis, K18-hACE2 transgenic (hACE2 Tg) mice with a leptin receptor deficiency (hACE2-Lepr -/-) or high-fat diet (hACE2-HFD) background were generated. The two mouse models were intranasally infected with a 5×10 5 median tissue culture infectious dose (TCID 50) of SARS-CoV-2, with serum and lung tissue samples collected at 3 days post-infection. The hACE2-Lepr -/- mice were then administered a combination of low-molecular-weight heparin (LMWH) (1 mg/kg or 5 mg/kg) and insulin via subcutaneous injection prior to intranasal infection with 1×10 4 TCID 50 of SARS-CoV-2. Daily drug administration continued until the euthanasia of the mice. Analyses of viral RNA loads, histopathological changes in lung tissue, and inflammation factors were conducted. Results demonstrated similar SARS-CoV-2 susceptibility in hACE2 Tg mice under both lean (chow diet) and obese (HFD) conditions. However, compared to the hACE2-Lepr +/+ mice, hACE2-Lepr -/- mice exhibited more severe lung injury, enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α, and increased apoptosis. Moreover, combined LMWH and insulin treatment effectively reduced disease progression and severity, attenuated lung pathological changes, and mitigated inflammatory responses. In conclusion, pre-existing diabetes can lead to more severe lung damage upon SARS-CoV-2 infection, and LMWH may be a valuable therapeutic approach for managing COVID-19 patients with diabetes.


Subject(s)
Anti-Infective Agents , COVID-19 , Diabetes Mellitus , Humans , Animals , Mice , Heparin , Heparin, Low-Molecular-Weight , SARS-CoV-2 , COVID-19/veterinary , Diabetes Mellitus/veterinary , Insulin/therapeutic use , Disease Models, Animal
14.
Life Sci ; 332: 122111, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37734436

ABSTRACT

Nickel compounds are widely used in industries and daily life as important industrial products. Long-term exposure to nickel compounds has been associated with increased incidence and poor prognosis of lung cancer. However, the molecular mechanism by which exposure to nickel compounds induces the malignant phenotype of lung cancer cells remains unclear. In this study, we confirmed that nickel chloride (NiCl2) exposure promotes invasion and metastasis through IL-6/STAT3 both in vitro and vivo. Mechanistically, we found that NiCl2 mediated the transcriptional regulation of E3 ubiquitin ligase TRIM31 by SATAT3 phosphorylation, and promoted its up-regulation. Overexpression TRIM31 is an independent risk factor for lung cancer patients, and it promotes the invasion and metastasis of lung cancer cells. In addition, E3 ubiquitination ligase TRIM31 binds to its substrate TP53 protein in the RING region and accelerates TP53 protein ubiquitination and degradation. Functional recovery experiments showed that NiCl2 exposure promotes the invasion and metastasis ability of lung cancer and ubiquitination-mediated degradation of TP53 protein through the STAT3/TRIM31 axis. These findings reveal the role and mechanism of NiCl2 in lung cancer progression, indicating that STAT3 and TRIM31 may be promising targets for the treatment of lung cancer.


Subject(s)
Lung Neoplasms , Neoplasm Metastasis , Nickel , Ubiquitin-Protein Ligases , Humans , Interleukin-6/metabolism , Lung Neoplasms/chemically induced , Nickel/adverse effects , STAT3 Transcription Factor/metabolism , Tripartite Motif Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
J Dairy Sci ; 106(11): 7396-7406, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641274

ABSTRACT

The Ca2+-selective epithelial channel TRPV5 plays a significant role in renal calcium reabsorption and improving osteoporosis (OP). In this study, we investigated the mechanisms of yak milk on osteoporosis mice in TRPV5-mediated Ca2+ reabsorption in the kidney. We observed that treatment of OP mice with yak milk reconstructed bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP and ALP in serum. Additionally, yak milk reduced the level of parathyroid hormone (PTH) and elevated 1,25-(OH)2D3 and calcitonin (CT), and inhibited the excretion of Ca/Cr and Pi/Cr in OP mice, which explained by regulating hormone levels and thus enhance the renal Ca2+ reabsorption. Further analysis exhibited that yak milk upregulated the expression of TRPV5 protein and mRNA as well as calbindin-D28k in OP mice kidneys. Overall, these outcomes demonstrate that yak milk enhances renal Ca2+ reabsorption through the TRPV5 pathway synergistically with calbindin-D28k, thus ameliorating OP mice. This provides a new perspective for yak milk as a nutritional supplement to prevent osteoporosis.

16.
Environ Res ; 232: 116253, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37276973

ABSTRACT

In this study, the relative residual UV absorbance (UV254) and/or electron donating capacity (EDC) was investigated as a surrogate parameter to evaluate the abatement of micropollutants during the Fe(II)/PMS and Mn(II)/NTA/PMS processes. In the Fe(II)/PMS process, due to the generation of SO4•- and •OH at acidic pH, UV254 and EDC abatement was greater at pH 5. In the Mn(II)/NTA/PMS process, UV254 abatement was greater at pH 7 and 9, while EDC abatement was greater at pH 5 and 7. This was attributed to the fact that MnO2 was formed at alkaline pH to remove UV254 by coagulation, and manganese intermediates (Mn(V)) were formed at acidic pH to remove EDC via electron transfer. Due to the strong oxidation capacity of SO4•-, •OH and Mn(V), the abatement of micropollutants increased with increasing dosages of oxidant in different waters in both processes. In the Fe(II)/PMS and Mn(II)/NTA/PMS processes, except for nitrobenzene (∼23% and 40%, respectively), the removal of other micropollutants was greater than 70% when the oxidant dosages were greater in different waters. The linear relationship between the relative residual UV254, EDC and the removal of micropollutants was established in different waters, showing a one-phase or two-phase linear relationship. The differences of the slopes for one-phase linear correlation in the Fe(II)/PMS process (micropollutant-UV254: 0.36-2.89, micropollutant-EDC: 0.26-1.75) were less than that in the Mn(II)/NTA/PMS process (micropollutant-UV254: 0.40-13.16, micropollutant-EDC: 0.51-8.39). Overall, these results suggest that the relative residual UV254 and EDC could truly reflect the removal of micropollutants during the Fe(II)/PMS and Mn(II)/NTA/PMS processes.


Subject(s)
Electrons , Water Pollutants, Chemical , Manganese Compounds , Water Pollutants, Chemical/analysis , Oxides , Oxidation-Reduction , Oxidants , Ferrous Compounds
17.
Materials (Basel) ; 16(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36984158

ABSTRACT

Lithium metal is one of the most promising anode materials for lithium-ion batteries; however, lithium dendrite growth hinders its large-scale development. So far, the dendrite formation mechanism is unclear. Herein, the dynamic evolution of lithium deposition in etheryl-based and ethylene carbonate (EC)-based electrolytes was obtained by combining an in situ electrochemical atomic force microscope (EC-AFM) with an electrochemical workstation. Three growth modes of lithium particles are proposed: preferential, merged, and independent growth. In addition, a lithium deposition schematic is proposed to clearly describe the morphological changes in lithium deposition. This schematic shows the process of lithium deposition, thus providing a theoretical basis for solving the problem of lithium dendrite growth.

18.
Environ Sci Pollut Res Int ; 30(7): 18535-18545, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36215005

ABSTRACT

Climate change has an extremely important impact on the geographic distribution of plants. The genus Millettia is an important plant resource in China and is widely used in medicine and ornamental industries. Due to the continuous changes of climate and the development and utilization of plant resources of the genus Millettia, it is of great significance to systematically investigate the geographic distribution of plants of the Millettia and their potential distribution under climate change. DIVA-GIS software was used to analyze 3492 plant specimens of 35 species of genus Millettia in the herbarium, and the ecological geographic distribution and richness of Millettia were analyzed, and the MaxEnt model was used to analyze the current and potential distribution in the future. The results show that the genus Millettia is distributed in 30 provinces in China, among which Yunnan and Guangdong provinces are the most distributed. Our model determines that precipitation in the driest month and annual temperature range are the most important bioclimatic variables. Future climate changes will increase the suitable habitat area of M. congestiflora by 16.75%, but other cliff beans Suitable habitats for vines will decrease significantly: M. cinereal by 47.66%, M. oosperma by 39.16%, M. pulchra by 36.04%, M. oraria by - 29.32%, M. nitida by 22.88%, M. dielsiana by 22.72%, M. sericosema by 19.53%, M. championii by 7.77%, M. pachycarpa by 7.72%, M. speciose by 2.05%, M. reticulata by 1.32%. Therefore, targeted measures should be taken to protect and develop these precious plant resources.


Subject(s)
Climate Change , Millettia , China , Ecosystem , Forecasting
19.
Biomater Sci ; 11(3): 975-984, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36541189

ABSTRACT

Oral insulin delivery has been extensively considered to achieve great patient compliance and convenience as well as favourable glucose homeostasis. However, its application is highly limited by the low insulin bioavailability owing to gastrointestinal barriers. Herein, we developed crosslinked zwitterionic microcapsules (CB-MCs@INS) based on a carboxyl betaine (CB)-modified poly(acryloyl carbonate-co-caprolactone) copolymer via the combination of microfluidics and UV-crosslinking to improve oral insulin delivery. CB-MC@INS microcapsules with high drug loading capacity (>40%) protected insulin from acid degradation in the harsh gastric environment. Through the introduction of CB-moieties, CB-MCs@INS possessed superior affinity for epithelial cells and improved insulin transport as compared to non-CB modified MCs@INS (5.15-fold), which was mainly attributed to the CB-mediated cell surface transporter via the PAT1 pathway. Moreover, the oral administration of CB-MCs@INS exhibited an excellent hypoglycaemic effect and maintained normoglycemia for up to 8 h in diabetic mice, demonstrating the great potential of crosslinked zwitterionic microcapsules as an oral insulin delivery platform for diabetes therapy.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Mice , Animals , Insulin , Drug Delivery Systems , Drug Carriers/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Capsules , Administration, Oral
20.
Sci Rep ; 12(1): 21644, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517536

ABSTRACT

The combined effects of temperature and salinity on the digestion and respiration metabolism of Pinctada fucata were evaluated via response surface methodology and box-benhnken design under laboratory condition. Results indicated that the primary and secondary effects of salinity and temperature had significant effects on amylase (AMS) of P. fucata (P < 0.05)., The digestive enzyme reached the maximum activity when temperature was 26 °C. The AMS and trypsin (TRYP) increased at first, and then decreased with increasing temperature. The Lipase (LPS) was positively correlated with either salinity or temperature. Salinity had no significant effect on TRYP as a primary effect (P > 0.05), but had a significant effect on TRYP as a secondary effect (P < 0.01). These effects were completely opposite to the effect of temperature on pepsin (PEP) as primary and secondary effects. The combined effects of salinity and temperature on AMS, TRYP and PEP were significant (P < 0.01), but had no significant effect on LPS (P > 0.05). The primary, secondary and interaction effects of salinity had significant effects on NKA (Na+-K+-ATPase) of P. fucata (P < 0.05), and NKA presented a U-shaped distribution with increasing salinity. The quadratic and interactive effects of temperature had a significant effect on AKP (P < 0.05), and AKP showed a U-shaped distribution with increasing temperature. Lactate dehydrogenase (LDH) activity decreased at first, and then increased when temperature and salinity changed from 20 to 30 °C and 23-33 ‰, respectively. The expression of GPX gene affected by temperature in gills may be delayed compared with that in hepatopancreas, and its expression is tissue-specific. The appropriate digestion and respiratory metabolism index models were established under the combined temperature and salinity conditions. The optimization results showed that the optimal combination of temperature and salinity was 26.288 °C/28.272‰. The desirability was 0.832. Results from the present study will provide a theoretical reference for shellfish culture affected by environmental interactions and the establishment of related index models.


Subject(s)
Pinctada , Salinity , Animals , Pinctada/genetics , Temperature , Lipopolysaccharides/pharmacology , Gills/metabolism , Respiration , Digestion , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...