Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 227: 115178, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36867960

ABSTRACT

Seasonal outbreaks of respiratory viral infections remain a global concern, with increasing morbidity and mortality rates recorded annually. Timely and false responses contribute to the widespread of respiratory pathogenic diseases owing to similar symptoms at an early stage and subclinical infection. The prevention of emerging novel viruses and variants is also a big challenge. Reliable point-of-care diagnostic assays for early infection diagnosis play a critical role in the response to threats of epidemics or pandemics. We developed a facile method for specifically identifying different viruses based on surface-enhanced Raman spectroscopy (SERS) with pathogen-mediated composite materials on Au nanodimple electrodes and machine learning (ML) analyses. Virus particles were trapped in three-dimensional plasmonic concave spaces of the electrode via electrokinetic preconcentration, and Au films were simultaneously electrodeposited, leading to the acquisition of intense and in-situ SERS signals from the Au-virus composites for ultrasensitive SERS detection. The method was useful for rapid detection analysis (<15 min), and the ML analysis for specific identification of eight virus species, including human influenza A viruses (i.e., H1N1 and H3N2 strains), human rhinovirus, and human coronavirus, was conducted. The highly accurate classification was achieved using the principal component analysis-support vector machine (98.9%) and convolutional neural network (93.5%) models. This ML-associated SERS technique demonstrated high feasibility for direct multiplex detection of different virus species for on-site applications.


Subject(s)
Biosensing Techniques , Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , Influenza A Virus, H3N2 Subtype , Spectrum Analysis, Raman/methods
2.
ACS Nano ; 17(4): 3610-3619, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36745820

ABSTRACT

Rapid, sensitive, simultaneous quantification of multiple biomarkers in point-of-care (POC) settings could improve the diagnosis and management of sepsis, a common, potentially life-threatening condition. Compared to high-end commercial analytical systems, POC systems are often limited by low sensitivity, limited multiplexing capability, or low throughput. Here, we report an ultrasensitive, multiplexed plasmonic sensing technology integrating chemifluorescence signal enhancement with plasmon-enhanced fluorescence detection. Using a portable imaging system, the dual chemical and plasmonic amplification enabled rapid analysis of multiple cytokine biomarkers in 1 h with sub-pg/mL sensitivities. Furthermore, we also developed a plasmonic sensing chip based on nanoparticle-spiked gold nanodimple structures fabricated by wafer-scale batch processes. We used the system to detect six cytokines directly from clinical plasma samples (n = 20) and showed 100% accuracy for sepsis detection. The described technology could be employed in rapid, ultrasensitive, multiplexed plasmonic sensing in POC settings for myriad clinical conditions.


Subject(s)
Biosensing Techniques , Sepsis , Humans , Point-of-Care Systems , Biomarkers/analysis , Gold/chemistry , Cytokines , Sepsis/diagnosis , Biosensing Techniques/methods
3.
Biosens Bioelectron ; 220: 114930, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36434843

ABSTRACT

Nanoscale plasmonic hotspots play a critical role in the enhancement of molecular Raman signals, enabling the sensitive and reliable trace analysis of biomedical molecules via surface-enhanced Raman spectroscopy (SERS). However, effective and label-free SERS diagnoses in practical fields remain challenging because of clinical samples' random adsorption and size mismatch with the nanoscale hotspots. Herein, we suggest a novel SERS strategy for interior hotspots templated with protein@Au core-shell nanostructures prepared via electrochemical one-pot Au deposition. The cytochrome c and lysates of SARS-CoV-2 (SLs) embedded in the interior hotspots were successfully functionalized to confine the electric fields and generate their optical fingerprint signals, respectively. Highly linear quantitative sensitivity was observed with the limit-of-detection value of 10-1 PFU/mL. The feasibility of detecting the targets in a bodily fluidic environment was also confirmed using the proposed templates with SLs in human saliva and nasopharyngeal swabs. These interior hotspots templated with the target analytes are highly desirable for early and on-site SERS diagnoses of infectious diseases without any labeling processes.


Subject(s)
Biosensing Techniques , COVID-19 , Virus Diseases , Humans , COVID-19/diagnosis , SARS-CoV-2 , Spectrum Analysis, Raman
4.
Biosens Bioelectron ; 210: 114325, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35500309

ABSTRACT

The sensitivity and limit-of-detection (LOD) of the traditional surface-enhanced Raman spectroscopy (SERS) platform suffer from the requirement of precise positioning of small analytes, including DNAs and bacteria, into narrow hotspots. In this study, a novel SERS sensor was developed using electrochemical deposition onto metal nanopillars (ECOMPs) combined with complementary DNAs (cDNAs) for the detection of pathogenic bacteria. Applying a redox potential to AuCl4- ions actively engineered the organometallic hotspots based on the cDNAs in a short time (<10 min) and simultaneously produced SERS signals. Because of the influence of potential-driven morphological properties on the SERS efficiency in the cDNA domains and the resonant coupling of internal fields with the fields confined between adjacent ECOMPs-cDNAs, the optimum growth time was determined to be 5 min. The EC-SERS detection and discrimination of Enterococcus faecium and Staphylococcus aureus were successfully carried out because of the DNA complementarity. Compared with plasmonic metal nanopillars (MPs)-cDNAs, the enhancement factor of the ECOMPs-cDNAs was estimated to be ∼2.0 × 103. A quantitative investigation revealed that a highly linear progression in the target DNA concentration range (0.05-100 nM) and a LOD of ∼0.035 nM were achieved. The specificity of the ECOMPs-cDNAs was validated by cross-hybridization. The platform was also used to assay human whole blood containing 0.1 nM bacterial DNAs. The proposed strategy provides the potential for highly sensitive SERS-based multiplex DNA detection in clinical diagnostics.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , DNA , DNA, Bacterial/genetics , DNA, Complementary , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods
5.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055189

ABSTRACT

Effective hotspot engineering with facile and cost-effective fabrication procedures is critical for the practical application of surface-enhanced Raman spectroscopy (SERS). We propose a SERS substrate composed of a metal film over polyimide nanopillars (MFPNs) with three-dimensional (3D) volumetric hotspots for this purpose. The 3D MFPNs were fabricated through a two-step process of maskless plasma etching and hydrogel encapsulation. The probe molecules dispersed in solution were highly concentrated in the 3D hydrogel networks, which provided a further enhancement of the SERS signals. SERS performance parameters such as the SERS enhancement factor, limit-of-detection, and signal reproducibility were investigated with Cyanine5 (Cy5) acid Raman dye solutions and were compared with those of hydrogel-free MFPNs with two-dimensional hotspots. The hydrogel-coated MFPNs enabled the reliable detection of Cy5 acid, even when the Cy5 concentration was as low as 100 pM. We believe that the 3D volumetric hotspots created by introducing a hydrogel layer onto plasmonic nanostructures demonstrate excellent potential for the sensitive and reproducible detection of toxic and hazardous molecules.


Subject(s)
Carbocyanines/analysis , Gold/chemistry , Silver/chemistry , Hydrogels , Limit of Detection , Nanostructures , Reproducibility of Results , Spectrum Analysis, Raman
6.
ACS Appl Polym Mater ; 4(11): 8127-8135, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-37552736

ABSTRACT

Surface dielectric barrier discharge (SDBD) was used to inactivate the infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trapped in a polypropylene (PP) melt-blown filter. We used a dielectric barrier made of polyimide films with hexagonal holes through which air flowed. In a cylindrical wind tunnel, the SDBD device supplied reactive oxygen species such as ozone to the SARS-CoV-2 trapped in the PP filter. A plaque assay showed that SDBD at an ozone concentration of approximately 51.6 ppm and exposure time of 30 min induced more than 99.78% reduction for filter-adhered SARS-CoV-2. A carbon catalyst after SDBD effectively reduced ozone exhaust below 0.05 ppm. The combination of SDBD, PP filter, and catalyst could be a promising way to decrease the risk of secondary infection due to indoor air purifiers.

7.
Polymers (Basel) ; 13(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200831

ABSTRACT

This work reports the self-organization of dimple nanostructures on a polyethylene naphthalate (PEN) surface where an Ar ion beam was irradiated at an ion energy of 600 eV. The peak-to-peak roughness and diameter of dimple nanostructures were 29.1~53.4 nm and 63.4~77.6 nm, respectively. The electron energy loss spectrum at the peaks and troughs of dimples showed similar C=C, C=O, and O=CH bonding statuses. In addition, wide-angle X-ray scattering showed that Ar ion beam irradiation did not induce crystallization of the PEN surface. That meant that the self-organization on the PEN surface could be due to the ion-induced surface instability of the amorphous layer and not due to the partial crystallinity differences of the peaks and valleys. A nonlinear continuum model described surface instability due to Ar ion-induced sputtering. The Kuramoto-Sivashinsky model reproduced the dimple morphologies numerically, which was similar to the experimentally observed dimple patterns. This preliminary validation showed the possibility that the continuum equation used for metal and semiconductor surfaces could be applied to polymer surfaces where ion beam sputtering occurred.

SELECTION OF CITATIONS
SEARCH DETAIL
...