Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Am J Otolaryngol ; 45(4): 104342, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38703609

ABSTRACT

OBJECTIVE: To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS: The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS: In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS: The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.

2.
J Clin Transl Hepatol ; 11(5): 1150-1160, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37577229

ABSTRACT

Background and Aims: The results of basic research implicate the vascular endothelial growth factor (VEGF) family as a potential target of hepatopulmonary syndrome (HPS). However, the negative results of anti-angiogenetic therapy in clinical studies have highlighted the need for markers for HPS. Therefore, we aimed to determine whether VEGF family members and their receptors can be potential biomarkers for HPS through clinical and experimental studies. Methods: Clinically, patients with chronic liver disease from two medical centers were enrolled and examined for HPS. Patients were divided into HPS, intrapulmonary vascular dilation [positive contrast-enhanced echocardiography (CEE) and normal oxygenation] and CEE-negative groups. Baseline information and perioperative clinical data were compared between HPS and non-HPS patients. Serum levels of VEGF family members and their receptors were measured. In parallel, HPS rats were established by common bile duct ligation. Liver, lung and serum samples were collected for the evaluation of pathophysiologic changes, as well as the expression levels of the above factors. Results: In HPS rats, all VEGF family members and their receptors underwent significant changes; however, only soluble VEGFR1 (sFlt-1) and the sFlt-1/ placental growth factor (PLGF) ratio were changed in almost the same manner as those in HPS patients. Furthermore, through feature selection and internal and external validation, sFlt-1 and the sFlt-1/PLGF ratio were identified as the most important variables to distinguish HPS from non-HPS patients. Conclusions: Our results from animal and human studies indicate that sFlt-1 and the sFlt-1/PLGF ratio in serum are potential markers for HPS.

3.
Chinese Journal of Biologicals ; (12): 11-15+20, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965559

ABSTRACT

Objective@#To evaluate the inhibitory effect of tumor vaccines in colon carcinoma model mice.@*Methods@# Mouse bone marrow⁃derived dendritic cells(BMDCs)were stimulated by using CpG β⁃glucan nanoparticles(CNP)in vitro. The BMDCs were divided into PBS group,NP group(without CpG nanoparticles),Lysate group(MC38 cell lysate)and CpG group(CpG1826),which were determined for the expression of marker molecules on the surface by flow cytometry and for the contents of interleukin⁃6(IL⁃6)and IL⁃12p40 in the culture supernatant by ELISA. The tumor lysate nano⁃vaccine was pre⁃ pared by mixing 50 mg/mL tumor lysate(MC38 cell lysate)with 200 mg/mL CNP in a volume ratio of 1∶1,with which mice were subcutaneously immunized as Vaccine group. Vaccine group,PBS group,CNP group and Lysate group were im⁃ munized once a week,for three times in total. Mice were subcutaneously inoculated with MC38 cells,2 × 105 cells for each, in the right lower limb 1 h after the last immunization,and measured for tumor volume once every three days to plot the tumor growth curve. The ratios of CD3+ CD4+ T and CD3+ CD8+ T cells in the blood were analyzed by flow cytometry and the levels of tumor necrosis factor⁃α(TNF⁃α)and interferon γ(IFNγ)in the blood and spleen of mice were determined by ELISA.@*Results@# CNP effectively increased the expression of CD11c+ CD80+,CD11c+ CD86+,CD11c+ MHC⁃Ⅱ+ and the secretion of IL⁃6 and IL⁃12p40 in BMDCs in vitro,which were significantly higher than those in other 4 groups(t = 4. 3 ~ 46. 2,each P < 0. 05). Compared with that of the other three groups,the tumor volume of mice in Vaccine group decreased significantly(t =2.6~3.4,eachP <0. 05);TherewasnosignificantdifferenceinCD3+ CD8+ TandCD3+ CD8+ Tcellratios(t = 0.5~ 1. 9,each P > 0. 05);The content of IFNγ in blood increased significantly(t = 3. 8 ~ 4. 6,P < 0. 05),while thatof TNF⁃α showed no significant difference(t = 0. 4 ~ 2. 0,each P > 0. 05);However,the contents of IFN γ and TNF⁃α in spleen increased significantly(t = 6. 3 ~ 13. 0,each P < 0. 001).@*Conclusion@#The prepared nano⁃vaccine of tumor lysate improvedtheimmune level in mice and effectively inhibited the growth of colon carcinoma.

4.
Exp Ther Med ; 23(5): 332, 2022 May.
Article in English | MEDLINE | ID: mdl-35401798

ABSTRACT

Metformin (MET) is the first-line therapeutic option for patients with type 2 diabetes that has garnered substantial attention over recent years. However, an insufficient number of studies have been performed to assess its effects on insulin resistance and the expression profile of long noncoding RNAs (lncRNAs). The present study divided mice into three groups: Control group, high-fat diet (HFD) group and HFD + MET group. A high-throughput sequencing analysis was conducted to detect lncRNA and mRNA expression levels, and differentially expressed lncRNAs were selected. Subsequently, the differentially expressed lncRNAs were validated both in vivo and in vitro (mouse liver AML12 cells treated with Palmitic acid) models of insulin resistance. After validating randomly selected lncRNAs via reverse transcription-quantitative PCR a novel lncRNA, NONMMUT031874.2, was identified, which was upregulated in the HFD group and reversed with MET treatment. To investigate the downstream mechanism of NONMMUT031874.2, lncRNA-microRNA (miR/miRNA)-mRNA co-expression network was constructed and NONCODE, miRBase and TargetScan databases were used, which indicated that NONMMUT031874.2 may regulate suppressor of cytokine signaling 3 by miR-7054-5p. For the in vitro part of the present study, AML12 cells were transfected with small interfering RNA to knock down NONMMUT031874.2 expression before being treated with palmitic acid (PA) and MET. The results showed that the expression of NONMMUT031874.2 was significantly increased whereas miR-7054-5p expression was significantly decreased by PA treatment. By contrast, after knocking down NONMMUT031874.2 expression or treatment with MET, the aforementioned in vitro observations were reversed. In addition, it was also found that NONMMUT031874.2 knockdown and treatment with MET exerted similar effects in alleviating insulin resistance and whilst decreasing glucose concentration in AML12 cells. These results suggest that MET treatment can ameliorate insulin resistance by downregulating NONMMUT031874.2 expression.

5.
Front Bioeng Biotechnol ; 9: 738081, 2021.
Article in English | MEDLINE | ID: mdl-34858956

ABSTRACT

Globally, about two million people die from liver diseases every year. Liver transplantation is the only reliable therapy for severe end-stage liver disease, however, the shortage of organ donors is a huge limitation. Human hepatocytes derived liver progenitor-like cells (HepLPCs) have been reported as a novel source of liver cells for development of in vitro models, cell therapies, and tissue-engineering applications, but their functionality as transplantation donors is unclear. Here, a 3-dimensional (3D) co-culture system using HepLPCs and human umbilical vein endothelial cells (HUVECs) was developed. These HepLPC spheroids mimicked the cellular interactions and architecture of mature hepatocytes, as confirmed through ultrastructure morphology, gene expression profile and functional assays. HepLPCs encapsulated in alginate beads are able to mitigate liver injury in mice treated with carbon tetrachloride (CCL4), while alginate coating protects the cells from immune attack. We confirmed these phenomena due to HUVECs producing glial cell line-derived neurotrophic factor (GDNF) to promote HepLPCs maturation and enhance HepLPCs tight junction through MET phosphorylation. Our results display the efficacy and safety of the alginate microencapsulated spheroids in animal model with acute liver injury (ALF), which may suggest a new strategy for cell therapy.

6.
CNS Neurosci Ther ; 27(11): 1313-1326, 2021 11.
Article in English | MEDLINE | ID: mdl-34255932

ABSTRACT

AIMS: Chronification of postoperative pain is a common clinical phenomenon following surgical operation, and it perplexes a great number of patients. Estrogen and its membrane receptor (G protein-coupled estrogen receptor, GPER) play a crucial role in pain regulation. Here, we explored the role of GPER in the rostral ventromedial medulla (RVM) during chronic postoperative pain and search for the possible mechanism. METHODS AND RESULTS: Postoperative pain was induced in mice or rats via a plantar incision surgery. Behavioral tests were conducted to detect both thermal and mechanical pain, showing a small part (16.2%) of mice developed into pain persisting state with consistent low pain threshold on 14 days after incision surgery compared with the pain recovery mice. Immunofluorescent staining assay revealed that the GPER-positive neurons in the RVM were significantly activated in pain persisting rats. In addition, RT-PCR and immunoblot analyses showed that the levels of GPER and phosphorylated µ-type opioid receptor (p-MOR) in the RVM of pain persisting mice were apparently increased on 14 days after incision surgery. Furthermore, chemogenetic activation of GPER-positive neurons in the RVM of Gper-Cre mice could reverse the pain threshold of pain recovery mice. Conversely, chemogenetic inhibition of GPER-positive neurons in the RVM could prevent mice from being in the pain persistent state. CONCLUSION: Our findings demonstrated that the GPER in the RVM was responsible for the chronification of postoperative pain and the downstream pathway might be involved in MOR phosphorylation.


Subject(s)
Chronic Pain/genetics , Medulla Oblongata/drug effects , Pain, Postoperative/genetics , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Chronic Pain/physiopathology , Hyperalgesia/psychology , Male , Mice , Mice, Inbred C57BL , Pain Measurement , Pain, Postoperative/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/genetics
7.
Biochem Biophys Res Commun ; 557: 69-76, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33862462

ABSTRACT

Remifentanil is a potent, short-acting opioid analgesic drug that can protect tissues from ischemia and reperfusion injury though anti-inflammatory effects. However, the utility of remifentanil in liver regeneration after hepatectomy is not known. Using a 70% hepatectomy mouse model (PHx), we found that preconditioning animals with 4 µg/kg remifentanil enhanced liver regeneration through supporting hepatocyte proliferation but not through anti-inflammatory effects. These effects were also phenocopied in vitro where 40 mM remifentanil promoted the proliferation of primary mouse hepatocyte cultures. We further identified that remifentanil treatment increased the expression of ß-arrestin 2 in vivo and in vitro. Demonstrating specificity, remifentanil preconditioning failed to promote liver regeneration in liver-specific ß-arrestin 2 knockout (CKO) mice subjected to PHx. While remifentanil increased the expression of activated (phosphorylated)-ERK and cyclin D1 in PHx livers, their levels were not significantly changed in remifentanil-treated CKO mice nor in WT mice pretreated with the ERK inhibitor U0126. Our findings suggest that remifentanil promotes liver regeneration via upregulation of a ß-arrestin 2/ERK/cyclin D1 axis, with implications for improving regeneration process after hepatectomy.


Subject(s)
Cyclin D1/metabolism , Liver Regeneration , MAP Kinase Signaling System/drug effects , Remifentanil/pharmacology , Reperfusion Injury/therapy , beta-Arrestin 2/metabolism , Analgesics, Opioid/pharmacology , Animals , Cell Proliferation/physiology , Cells, Cultured , Disease Models, Animal , Hepatectomy , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Up-Regulation
8.
Eur J Gastroenterol Hepatol ; 33(1S Suppl 1): e449-e457, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33852512

ABSTRACT

BACKGROUND: This study attempted to investigate the impact of hepatopulmonary syndrome (HPS) on postoperative outcomes in hepatitis B virus-induced hepatocellular carcinoma (HBV-HCC) patients. METHODS: HBV-HCC patients undergoing primary curative hepatectomy for HCC in our hospital were diagnosed with HPS by contrast-enhanced echocardiography (CEE) and arterial blood gas analysis. Patients were divided into HPS, intrapulmonary vascular dilation (IPVD) (patients with positive CEE results and normal oxygenation) and control (patients with negative CEE results) groups. Baseline information, perioperative clinical data and postoperative pulmonary complications (PPCs) were compared among all groups. Cytokines in patient serums from each group (n = 8) were also assessed. RESULTS: Eighty-seven patients undergoing hepatectomy from October 2019 to January 2020 were analyzed. The average time in the postanaesthesia care unit (112.10 ± 38.57 min) and oxygen absorption after extubation [34.0 (14.5-54.5) min] in the HPS group was longer than in IPVD [81.81 ± 26.18 min and 16.0 (12.3-24.0) min] and control [93.70 ± 34.06 min and 20.5 (13.8-37.0) min] groups. There were no significant differences in oxygen absorption time after extubation between HPS and control groups. The incidence of PPCs, especially bi-lateral pleural effusions in the HPS group (61.9%), was higher than in IPVD (12.5%) and control (30.0%) groups. Increased serum levels of the growth-regulated oncogene, monocyte chemoattractant protein, soluble CD40 ligand and interleukin 8 might be related to delayed recovery in HPS patients. CONCLUSIONS: HPS patients with HBV-HCC suffer delayed postoperative recovery and are at higher risk for PPCs, especially bi-lateral pleural effusions, which might be associated with changes in certain cytokines.


Subject(s)
Carcinoma, Hepatocellular , Hepatopulmonary Syndrome , Liver Neoplasms , Pleural Effusion , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/surgery , Cytokines , Hepatectomy/adverse effects , Hepatopulmonary Syndrome/diagnosis , Hepatopulmonary Syndrome/etiology , Humans , Liver Neoplasms/complications , Liver Neoplasms/surgery , Oxygen , Pleural Effusion/diagnostic imaging , Pleural Effusion/etiology
9.
Paediatr Anaesth ; 31(6): 702-712, 2021 06.
Article in English | MEDLINE | ID: mdl-33715251

ABSTRACT

BACKGROUND: In pediatric living-donor liver transplantation, lactated Ringer's solution and normal saline are commonly used for intraoperative fluid management, but the comparative clinical outcomes remain uncertain. AIMS: To compare the effect between lactated Ringer's solution and normal saline for intraoperative volume replacement on clinical outcomes among pediatric living-donor liver transplantation patients. METHODS: This single-center, retrospective trial study enrolled children who received either lactated Ringer's solution or normal saline during living-donor liver transplantation between January 2010 and August 2016. The groups with comparable clinical characteristics were balanced by propensity score matching. The primary outcome was 90-day all-cause mortality, and the secondary outcomes included early allograft dysfunction, primary nonfunction, acute renal injury, and hospital-free days (days alive postdischarge within 30 days of liver transplantation). RESULTS: We included 333 pediatric patients who met the entry criteria for analysis. Propensity score matching identified 61 patients in each group. After matching, the lactated Ringer's solution group had a higher 90-day mortality rate than the normal saline group (11.5% vs. 0.0%). Early allograft dysfunction and primary nonfunction incidences were also more frequent in the lactated Ringer's solution group (19.7% and 11.5%, respectively) than in the normal saline group (3.3% and 0.0%, respectively). In the lactated Ringer's solution group, four (6.6%) recipients developed acute renal injury within 7 days postoperatively compared with three (4.9%) recipients in the normal saline group. Hospital-free days did not differ between groups (9 days [1-13] vs. 9 days [0-12]). CONCLUSIONS: For intraoperative fluid management in pediatric living-donor liver transplantation patients, lactated Ringer's solution administration was associated with a higher 90-day mortality rate than normal saline. This finding has important implications for selecting crystalloid in pediatric living-donor liver transplantation. Further randomized clinical trials in larger cohort are necessary to confirm this finding.


Subject(s)
Liver Transplantation , Saline Solution , Aftercare , Child , Humans , Isotonic Solutions , Living Donors , Patient Discharge , Retrospective Studies , Ringer's Lactate
10.
World J Gastroenterol ; 27(4): 345-357, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33584067

ABSTRACT

BACKGROUND: Studies suggested that remote ischemic preconditioning (RIPC) may effectively lessen the harmful effects of ischemia reperfusion injury during organ transplantation surgery. AIM: To investigate the protective effects of RIPC on living liver donors and recipients following pediatric liver transplantation. METHODS: From January 2016 to January 2019 at Renji Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 208 donors were recruited and randomly assigned to four groups: S-RIPC group (no intervention; n = 55), D-RIPC group (donors received RIPC; n = 51), R-RIPC group (recipients received RIPC, n = 51) and DR-RIPC group (both donors and recipients received RIPC; n = 51). We primarily evaluated postoperative liver function among donors and recipients and incidences of early allograft dysfunction, primary nonfunction and postoperative complications among recipients. RESULTS: RIPC did not significantly improve alanine transaminase and aspartate aminotransferase levels among donors and recipients or decrease the incidences of early allograft dysfunction, primary nonfunction, and postoperative complications among recipients. Limited protective effects were observed, including a lower creatinine level in the D-RIPC group than in the S-RIPC group on postoperative day 0 (P < 0.05). However, no significant improvements were found in donors who received RIPC. Furthermore, RIPC had no effects on the overall survival of recipients. CONCLUSION: The protective effects of RIPC were limited for recipients who received living liver transplantation, and no significant improvement of the prognosis was observed in recipients.


Subject(s)
Ischemic Preconditioning , Liver Transplantation , Reperfusion Injury , Child , China/epidemiology , Humans , Liver Transplantation/adverse effects , Living Donors , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control
11.
Insect Sci ; 27(4): 697-707, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30919568

ABSTRACT

The Hedgehog (Hh) signaling pathway is one of the major regulators of embryonic development and tissue homeostasis in multicellular organisms. However, the role of this pathway in the silkworm, especially in the silkworm midgut, remains poorly understood. Here, we report that Bombyx mori Hedgehog (BmHh) is expressed in most tissues of silkworm larvae and that its functions are well-conserved throughout evolution. We further demonstrate that the messenger RNA of four Hh signaling components, BmHh ligand, BmPtch receptor, signal transducer BmSmo and transcription factor BmCi, are all upregulated following Escherichia coli or Bacillus thuringiensis infection, indicating the activation of the Hh pathway. Simultaneously, midgut cell proliferation is strongly promoted. Conversely, the repression of Hh signal transduction with double-stranded RNA or cyclopamine inhibits the expression of BmHh and BmCi and reduces cell proliferation. Overall, these findings provide new insights into the Hh signaling pathway in the silkworm, B. mori.


Subject(s)
Bombyx/physiology , Cell Proliferation/genetics , Hedgehog Proteins/genetics , Animals , Bombyx/genetics , Bombyx/growth & development , Digestive System/metabolism , Hedgehog Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism
12.
CNS Neurosci Ther ; 25(4): 532-543, 2019 04.
Article in English | MEDLINE | ID: mdl-30444079

ABSTRACT

AIMS: Demyelination, one of the major pathological changes of white matter injury, is closely related to T-cell-mediated immune responses. Thus, we investigate the role of an IL-2 monoclonal antibody (IL-2mAb, JES6-1) in combatting demyelination during the late phase of stroke. METHODS: IL-2mAb or IgG isotype antibody (0.25 mg/kg) was injected intraperitoneally 2 and 48 hours after middle cerebral artery occlusion (MCAO) surgery. Infarct volume, peripheral immune cell infiltration, microglia activation, and myelin loss were measured by 2,3,5-triphenyte trazoliumchloride staining, immunofluorescence staining, flow cytometry, and Western blot. Intraperitoneal CD8 neutralizing antibody (15 mg/kg) was injected 1 day before MCAO surgery to determine the role of CD8+ T cells on demyelinating lesions. RESULTS: IL-2mAb treatment reduced brain infarct volume, attenuated demyelination, and improved long-term sensorimotor functions up to 28 days after dMCAO. Brain infiltration of CD8+ T cells and peripheral activation of CD8+ T cells were both attenuated in IL-2 mAb-treated mice. The protection of IL-2mAb on demyelination was abolished in mice depleted of CD8+ T cell 1 week after stroke. CONCLUSIONS: IL-2mAb preserved white matter integrity and improved long-term sensorimotor functions following cerebral ischemic injury. The activation and brain infiltration of CD8+ T cells are detrimental for demyelination after stroke and may be the major target of IL-2mAb posttreatment in the protection of white matter integrity after stroke.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Brain Ischemia/drug therapy , CD8-Positive T-Lymphocytes/drug effects , Demyelinating Diseases/drug therapy , Interleukin-2/therapeutic use , Animals , Antibodies, Monoclonal/pharmacology , Brain Ischemia/immunology , Brain Ischemia/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Demyelinating Diseases/immunology , Demyelinating Diseases/metabolism , Interleukin-2/pharmacology , Male , Mice , Mice, Inbred C57BL , Random Allocation
13.
Int J Clin Exp Pathol ; 12(3): 1022-1028, 2019.
Article in English | MEDLINE | ID: mdl-31933914

ABSTRACT

Several studies have shown a broad variation in the prevalence of human papillomavirus (HPV) in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), whereas the relationship is less well-defined and specific HPV genotypes lack examination in OLK. In the present study, the role of HPV and surrogate p16 expression was investigated to explore the correlation and pathogenesis in OLK and OSCC. Polymerase chain reaction (PCR) and flow-through hybridization technology were utilized to detect HPV genotypes in oral exfoliated cells from 30 healthy volunteers, 103 OLK and 30 OSCC patients. Expression of p16 was assessed by immunohistochemistry (IHC) in biopsies from these OLK and OSCC, in addition to 15 normal oral mucosal tissues as the control group. The healthy controls showed 3.3% (1/30) HPV presence; In OLK and OSCC, the detection rate was 4.9% (5/103), 3.3% (1/30), respectively. No significant relationship between HPV and OLK or OSCC was observed when compared with the control group (P>0.05). All 6 HPV-positive OLK and OSCC cases had p16 overexpression. But the sensitivity of p16 IHC was poor, because 88.4% (38/43) of p16 over-expressed OLK were HPV negative. There was no statistical significance between HPV and the sex, age, site, alcohol consumption, or smoking. These findings suggested HPV had a low prevalence in OLK and OSCC. This suggests the detection of HPV genotypes by PCR in exfoliated cells combined with p16 IHC may be more accurate to represent HPV infection.

14.
CNS Neurosci Ther ; 24(12): 1115-1128, 2018 12.
Article in English | MEDLINE | ID: mdl-30387323

ABSTRACT

The blood-brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood-brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.


Subject(s)
Blood-Brain Barrier/physiopathology , Immune System/physiopathology , Stroke/immunology , Stroke/pathology , Animals , Humans
15.
CNS Neurosci Ther ; 24(12): 1100-1114, 2018 12.
Article in English | MEDLINE | ID: mdl-30350341

ABSTRACT

Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.


Subject(s)
Brain Ischemia/complications , Brain , Encephalitis/etiology , Stroke , Animals , Brain/immunology , Brain/metabolism , Brain/pathology , Encephalitis/pathology , Humans , Neurogenesis , Neuroglia/immunology , Neuroglia/pathology , Stroke/complications , Stroke/etiology , Stroke/immunology
16.
J Radiol Prot ; 38(3): 892-907, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29743379

ABSTRACT

In nuclear decommissioning, virtual simulation technology is a useful tool to achieve an effective work process by using virtual environments to represent the physical and logical scheme of a real decommissioning project. This technology is cost-saving and time-saving, with the capacity to develop various decommissioning scenarios and reduce the risk of retrofitting. The method utilises a radiation map in a virtual simulation as the basis for the assessment of exposure to a virtual human. In this paper, we propose a fast simulation method using a known radiation source. The method has a unique advantage over point kernel and Monte Carlo methods because it generates the radiation map using interpolation in a virtual environment. The simulation of the radiation map including the calculation and the visualisation were realised using UNITY and MATLAB. The feasibility of the proposed method was tested on a hypothetical case and the results obtained are discussed in this paper.


Subject(s)
Computer Simulation , Radiation Protection , Humans , Neural Networks, Computer , Virtual Reality
17.
Biochem Pharmacol ; 151: 79-88, 2018 05.
Article in English | MEDLINE | ID: mdl-29477572

ABSTRACT

GMQ (2-guanidine-4-methylquinazoline or N-(4-methyl-2-quinazolinyl)-guanidine hydrochloride), an agonist of acid-sensing ion channel type 3, has been increasingly used for in vivo studies of alternations in nociceptic behavior. In this study, we tried to investigate whether GMQ has any possible effect on other types of ion channels. Addition of GMQ to pituitary GH3 cells raised the amplitude of Ca2+-activated K+ currents (IK(Ca)), which was reversed by verruculogen or PF1022A, but not by TRAM-39. Under inside-out current recordings, addition of GMQ into bath enhanced the probability of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 0.95 µM. The activation curve of BKCa channels during exposure to GMQ shifted to a lower depolarized potential, with no change in the gating charge of the curve; however, there was a reduction of free energy for channel activation in its presence. As cells were exposed to GMQ, the amplitude of ion currents were suppressed, including delayed rectifying K+ current, voltage-gated Na+ and L-type Ca2+ currents. In Rolf B1.T olfactory sensory neuron, addition of GMQ was able to induce inward current and to suppress peak INa. Taken together, findings from these results indicated that in addition to the activation of ASIC3 channels, this compound might directly produce additional actions on various types of ion channels. Caution should be taken in the interpretation of in vivo experimental results when GMQ or other structurally similar compounds are used as targets to characterize the potential functions of ASIC3 channels.


Subject(s)
Acid Sensing Ion Channels/metabolism , Guanidines/pharmacology , Ion Channel Gating/drug effects , Olfactory Receptor Neurons/drug effects , Pituitary Gland/drug effects , Quinazolines/pharmacology , Sodium Channel Agonists/pharmacology , Action Potentials/drug effects , Animals , Cell Line, Tumor , Ion Transport , Olfactory Receptor Neurons/metabolism , Patch-Clamp Techniques , Pituitary Gland/metabolism , Rats
18.
Nanomaterials (Basel) ; 7(7)2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28677626

ABSTRACT

The morphological control of polymer micellar aggregates is an important issue in applications such as nanomedicine and material science. Stimuli responsive soft materials have attracted significant attention for their well-controlled morphologies. However, despite extensive studies, it is still a challenge to prepare nanoscale assemblies with responsive behaviors. Herein, a new chiral liquid crystal (LC) aliphatic polycarbonate with side chain bearing diosgenyl mesogen, named mPEG43-PMCC25-P(MCC-DHO)15, was synthesized through the ring-opening polymerization and coupling reaction. The self-assembled behavior of the LC copolymer was explored. In aqueous solution, the functionalized copolymer could self-organize into different nanostructures with changing pH value, such as nanospheres and nanofibers. This would offer new possibilities in the design of nanostructured organic materials.

19.
ACS Appl Mater Interfaces ; 9(20): 17417-17426, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28447455

ABSTRACT

Overexpression of matrix metalloproteinase-9 (MMP-9) is critical for diabetic chronic wounds involved in the refractory wound healing process. We aimed to develop a strategy through RNAi to decrease MMP-9 expression and improve diabetic wound healing. We had explored ß-CD-(D3)7 as a gene carrier to take siRNA and effectively interfere with MMP-9 expression. It has been proven that ß-CD-(D3)7 could be used as an effective siRNA delivery system. In this study, we want to know about the efficiency and safety of ß-CD-(D3)7/MMP-9 siRNA for improving wound healing in diabetic rats. ß-CD-(D3)7/MMP-9 siRNA treated animals show lower levels of MMP-9 expression, which induce faster wound-close rates. Histological evaluation indicates that ß-CD-(D3)7/MMP-9 siRNA significantly increases the content of collagen around the injured tissues. The number of neutrophilic ganulocytes was significantly decreased through treatment of ß-CD-(D3)7/MMP-9 siRNA. In vivo fluorescence imaging assessment shows that ß-CD-(D3)7/MMP-9 siRNA could not cause organ damage and organ accumulation. The results suggest that ß-CD-(D3)7/MMP-9 siRNA might be developed as a novel topical agent for the diabetic wounds treatment.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Collagen , Matrix Metalloproteinase 9 , RNA, Small Interfering , Rats , Wound Healing
20.
Sci Rep ; 7: 40438, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084414

ABSTRACT

Requirement for rocuronium upon surgery changes only minimally in patients with end-stage liver diseases. Our study consisted of both human and rat studies to explore the reason. The reduction rate of rocuronium infusion required to maintain neuromuscular blockade during the anhepatic phase (relative to paleohepatic phase) was examined in 16 children with congenital biliary atresia receiving orthotopic liver transplantation. Pharmacodynamics and pharmacokinetics of rocuronium were studied based on BDL rats. The role of increased Oatp2 and decrease Oatp1 expressions in renal compensation were explored. The reduction of rocuronium requirements significantly decreased in obstructively jaundiced children (24 ± 9 vs. 39 ± 11%). TOF50 in BDL rats was increased by functional removal of the kidneys but not the liver, and the percentage of rocuronium excretion through urine increased (20.3 ± 6.9 vs. 8.6 ± 1.8%), while that decreased through bile in 28d-BDL compared with control group. However, this enhanced renal secretion for rocuronium was eliminated by Oatp2 knock-down, rather than Oatp1 overexpression (28-d BDL vs. Oatp1-ShRNA or Oatp2-ShRNA, 20.3 ± 6.9 vs. 17.0 ± 6.6 or 9.3 ± 3.2%). Upon chronic/sub-chronic loss of bile excretion, rocuronium clearance via the kidneys is enhanced, by Oatp2 up-regulation.


Subject(s)
Androstanols/metabolism , Bile/metabolism , Kidney/metabolism , Organic Anion Transporters/metabolism , Up-Regulation , Bile Ducts/metabolism , Bile Ducts/pathology , Child , Female , Gene Knockdown Techniques , Humans , Jaundice, Obstructive/pathology , Ligation , Male , Rocuronium
SELECTION OF CITATIONS
SEARCH DETAIL
...