Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Microbiol Spectr ; : e0216423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563791

ABSTRACT

African swine fever (ASF) is a highly fatal viral disease that poses a significant threat to domestic pigs and wild boars globally. In our study, we aimed to explore the potential of a multiplexed CRISPR-Cas system in suppressing ASFV replication and infection. By engineering CRISPR-Cas systems to target nine specific loci within the ASFV genome, we observed a substantial reduction in viral replication in vitro. This reduction was achieved through the concerted action of both Type II and Type III RNA polymerase-guided gRNA expression. To further evaluate its anti-viral function in vivo, we developed a pig strain expressing the multiplexable CRISPR-Cas-gRNA via germline genome editing. These transgenic pigs exhibited normal health with continuous expression of the CRISPR-Cas-gRNA system, and a subset displayed latent viral replication and delayed infection. However, the CRISPR-Cas9-engineered pigs did not exhibit a survival advantage upon exposure to ASFV. To our knowledge, this study represents the first instance of a living organism engineered via germline editing to assess resistance to ASFV infection using a CRISPR-Cas system. Our findings contribute valuable insights to guide the future design of enhanced viral immunity strategies. IMPORTANCE: ASFV is currently a devastating disease with no effective vaccine or treatment available. Our study introduces a multiplexed CRISPR-Cas system targeting nine specific loci in the ASFV genome. This innovative approach successfully inhibits ASFV replication in vitro, and we have successfully engineered pig strains to express this anti-ASFV CRISPR-Cas system constitutively. Despite not observing survival advantages in these transgenic pigs upon ASFV challenges, we did note a delay in infection in some cases. To the best of our knowledge, this study constitutes the first example of a germline-edited animal with an anti-virus CRISPR-Cas system. These findings contribute to the advancement of future anti-viral strategies and the optimization of viral immunity technologies.

2.
J Hazard Mater ; 466: 133560, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38246054

ABSTRACT

Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.


Subject(s)
Electronic Waste , Environmental Pollutants , Flame Retardants , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Refuse Disposal , Humans , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Electronic Waste/analysis , Metals, Heavy/analysis , Oxidative Stress , Polycyclic Aromatic Hydrocarbons/analysis , China
3.
Environ Sci Technol ; 57(43): 16512-16521, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37857302

ABSTRACT

Understanding mercury (Hg) complexation with soil organic matter is important in assessing atmospheric Hg accumulation and sequestration processes in forest ecosystems. Separating soil organic matter into particulate organic matter (POM) and mineral-associated organic matter (MAOM) can help in the understanding of Hg dynamics and cycling due to their very different chemical constituents and associated formation and functioning mechanisms. The concentration of Hg, carbon, and nitrogen contents and isotopic signatures of POM and MAOM in a deglaciated forest chronosequence were determined to construct the processes of Hg accumulation and sequestration. The results show that Hg in POM and MAOM are mainly derived from atmospheric Hg0 deposition. Hg concentration in MAOM is up to 76% higher than that in POM of broadleaf forests and up to 60% higher than that in POM of coniferous forests. Hg accumulation and sequestration in organic soil vary with the vegetation succession. Variations of δ202Hg and Δ199Hg are controlled by source mixing in the broadleaf forest and by Hg sequestration processes in the coniferous forest. Accumulation of atmospheric Hg and subsequent microbial reduction enrich heavier Hg isotopes in MAOM compared to POM due to the specific chemical constituents and nutritional role of MAOM.


Subject(s)
Mercury , Mercury/analysis , Ecosystem , Forests , Minerals , Soil/chemistry , Dust , Particulate Matter , Environmental Monitoring/methods
4.
Mol Plant ; 16(12): 1976-1989, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37837193

ABSTRACT

Brassinosteroid (BR) is a vital plant hormone that regulates plant growth and development. BRASSINAZOLE RESISTANT 1 (BZR1) is a key transcription factor in BR signaling, and its nucleocytoplasmic localization is crucial for BR signaling. However, the mechanisms that regulate BZR1 nucleocytoplasmic distribution and thus the homeostasis of BR signaling remain largely unclear. The vacuole is the largest organelle in mature plant cells and plays a key role in maintenance of cellular pH, storage of intracellular substances, and transport of ions. In this study, we uncovered a novel mechanism of BR signaling homeostasis regulated by the vacuolar H+-ATPase (V-ATPase) and BZR1 feedback loop. Our results revealed that the vha-a2 vha-a3 mutant (vha2, lacking V-ATPase activity) exhibits enhanced BR signaling with increased total amount of BZR1, nuclear-localized BZR1, and the ratio of BZR1/phosphorylated BZR1 in the nucleus. Further biochemical assays revealed that VHA-a2 and VHA-a3 of V-ATPase interact with the BZR1 protein through a domain that is conserved across multiple species. VHA-a2 and VHA-a3 negatively regulate BR signaling by interacting with BZR1 and promoting its retention in the tonoplast. Interestingly, a series of molecular analyses demonstrated that nuclear-localized BZR1 could bind directly to specific motifs in the promoters of VHA-a2 and VHA-a3 to promote their expression. Taken together, these results suggest that V-ATPase and BZR1 may form a feedback regulatory loop to maintain the homeostasis of BR signaling in Arabidopsis, providing new insights into vacuole-mediated regulation of hormone signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Vacuolar Proton-Translocating ATPases , Arabidopsis/metabolism , Brassinosteroids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Feedback , Homeostasis , Gene Expression Regulation, Plant , DNA-Binding Proteins/metabolism
5.
Cell Rep ; 42(7): 112741, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37421624

ABSTRACT

Eukaryotic protein translation is a complex process that requires the participation of different proteins. Defects in the translational machinery often result in embryonic lethality or severe growth defects. Here, we report that RNase L inhibitor 2/ATP-BINDING CASSETTE E2 (RLI2/ABCE2) regulates translation in Arabidopsis thaliana. Null mutation of rli2 is gametophytic and embryonic lethal, whereas knockdown of RLI2 causes pleiotropic developmental defects. RLI2 interacts with several translation-related factors. Knockdown of RLI2 affects the translational efficiency of a subset of proteins involved in translation regulation and embryo development, indicating that RLI2 has critical roles in these processes. In particular, RLI2 knockdown mutant exhibits decreased expression of genes involved in auxin signaling and female gametophyte and embryo development. Therefore, our results reveal that RLI2 facilitates assembly of the translational machinery and indirectly modulates auxin signaling to regulate plant growth and development.


Subject(s)
ATP-Binding Cassette Transporters , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mutation/genetics , Ovule/genetics , Ovule/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
6.
J Transl Med ; 21(1): 345, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221594

ABSTRACT

Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Mitochondria
7.
Sci Total Environ ; 874: 162523, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870262

ABSTRACT

To quantify impacts of vegetation and topographic factors on heavy metal accumulation in montane forests, we assessed the spatial distribution and determined the sources of mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu) and zinc (Zn) in timberline forests of Gongga Mountain. Our results show that vegetation type has little impact on the soil Hg, Cd and Pb concentrations. The soil concentrations of Cr, Cu and Zn are controlled by litter return, moss and lichen biomass, and canopy interception, with the highest concentrations in shrub forest. In contrast to other forests, the soil Hg pool in coniferous forest is significantly high due to the elevated Hg concentration and greater biomass production in litter. However, the soil pool sizes of Cd, Cr, Cu and Zn show a distinct increase along the elevation, which are attributed to the elevated heavy metal inputs from litter and moss, as well as the greater cloud water-induced atmospheric heavy metal depositions. The highest Hg concentrations of the aboveground parts of plant are in the foliage and bark, while the concentrations of Cd, Pb, Cr, Cu and Zn in the branch and bark are the highest. The decreased biomass density leads to a downward trend in the total vegetation pool sizes of Hg, Cd, Pb, Cr, Cu and Zn by 0.4-4.4 times with increasing elevation. The statistical analysis finally suggests that Hg, Cd and Pb mainly originate from anthropogenic atmospheric deposition, whereas Cr, Cu and Zn are mainly from natural sources. Our results highlight the importance of vegetation types and terrain conditions on distribution patterns of heavy metal in alpine forests.


Subject(s)
Bryophyta , Mercury , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Tibet , Lead/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis , Mercury/analysis , Chromium/analysis , Soil , Environmental Monitoring/methods , China , Risk Assessment
8.
Cells ; 11(20)2022 10 14.
Article in English | MEDLINE | ID: mdl-36291100

ABSTRACT

The endocrine disrupting activity of bisphenol compounds is well documented, but less is known regarding their impact on cell division and early embryo formation. Here, we tested the effects of acute in vitro exposure to bisphenol A (BPA) and its common substitute, bisphenol F (BPF), during critical stages of mouse pre-implantation embryo development, including the first mitotic division, cell polarization, as well as morula and blastocyst formation. Timing of initial cleavage was determined by live-cell imaging, while subsequent divisions, cytoskeletal organization and lineage marker labeling were assessed by high-resolution fluorescence microscopy. Our analysis reveals that brief culture with BPA or BPF impeded cell division and disrupted embryo development at all stages tested. Surprisingly, BPF was more detrimental to the early embryo than BPA. Notably, poor embryo development was associated with cytoskeletal disruptions of the actomyosin network, apical domain formation during cell polarization, actin ring zippering for embryo sealing and altered cell lineage marker profiles. These results underscore that bisphenols can disrupt cytoskeletal integrity and remodeling that is vital for early embryo development and raise concerns regarding the use of BPF as a 'safe' BPA substitute.


Subject(s)
Benzhydryl Compounds , Blastocyst , Cytoskeleton , Phenols , Animals , Mice , Actins/metabolism , Actomyosin/metabolism , Blastocyst/drug effects , Blastocyst/ultrastructure , Benzhydryl Compounds/toxicity , Phenols/toxicity , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure
9.
Sensors (Basel) ; 22(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35062451

ABSTRACT

It is challenging to obtain wafer-scaled aligned films for completely exploiting the promising properties of semiconducting single-walled carbon nanotubes (s-SWCNTs). Aligned s-SWCNTs with a large area can be obtained by combining water evaporation and slow withdrawal-induced self-assembly in a dip-coating process. Moreover, the tunability of deposition morphology parameters such as stripe width and spacing is examined. The polarized Raman results show that s-SWCNTs can be aligned in ±8.6°. The derived two terminal photodetector shows both a high negative responsivity of 41 A/W at 520 nm and high polarization sensitivity. Our results indicate that aligned films with a large area may be useful to electronics- and optoelectronics-related applications.

10.
Sci Total Environ ; 807(Pt 2): 150660, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34634339

ABSTRACT

Water hyacinth is a major aquatic plant in ecological restoration which propagates rapidly, whereas its biomass waste lacks value-added utilization routes. To address this problem, we put forth an innovative two-step carbonization strategy to convert water hyacinth to catalyst for isomerization of glucose to fructose. Through combining the hydrothermal carbonization and pyrolysis, catalyst morphology including its carbon substrate and calcium salts was successfully engineered. The prepared hydrochar-based catalyst presented an outstanding catalytic performance, the optimal of which could obtain 31% fructose yield with 89% selectivity at 120 °C for 45 min in water and maintain the reactivity for at least three runs. The catalytic reactivity was derived from the crystallization of endogenous alkaline earth calcium in water hyacinth, which was comparable to catalysts doped with expensive metals. Besides, the equipment and energy requirements for preparation were quite low-demanding (calcined only at 400 °C for 1 h). This study not only pioneers a sustainable way to upcycle aquatic biomass, but also invents a low-cost and efficient catalyst for biorefinery through the production of engineered carbon.


Subject(s)
Eichhornia , Biomass , Calcium , Glucose , Isomerism
11.
Am J Transplant ; 22(1): 46-57, 2022 01.
Article in English | MEDLINE | ID: mdl-34331749

ABSTRACT

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans. Here, we show that long-term survival of renal xenografts from TKO pigs that express additional human transgenes (hTGs) can be achieved in cynomolgus monkeys. Kidney xenografts from TKO-hTG pigs were transplanted into eight cynomolgus recipients without pre-screening for low anti-pig antibody titers. Two recipients of TKO-hTG xenografts with low expression of human complement regulatory proteins (CRPs) (TKO-A) survived for 2 and 61 days, whereas six recipients of TKO-hTG xenografts with high CRP expression (TKO-B) survived for 15, 20, 71, 135, 265, and 316 days. Prolonged CD4+ T cell depletion and low anti-pig antibody titers, which were previously reported important for long-term survival of αGal knock-out (GTKO) xenografts, were not always required for long-term survival of TKO-hTG renal xenografts. This study indicates that OWMs such as cynomolgus monkeys can be used as a relevant model for clinical application of xenotransplantation using TKO pigs.


Subject(s)
Kidney Transplantation , Animals , Animals, Genetically Modified , Graft Rejection/genetics , Humans , Macaca fascicularis , Swine , Transplantation, Heterologous
14.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34050015

ABSTRACT

Germline editing, the process by which the genome of an individual is edited in such a way that the change is heritable, has been applied to a wide variety of animals [D. A. Sorrell, A. F. Kolb, Biotechnol. Adv. 23, 431-469 (2005); D. Baltimore et al., Science 348, 36-38 (2015)]. Because of its relevancy in agricultural and biomedical research, the pig genome has been extensively modified using a multitude of technologies [K. Lee, K. Farrell, K. Uh, Reprod. Fertil. Dev. 32, 40-49 (2019); C. Proudfoot, S. Lillico, C. Tait-Burkard, Anim. Front. 9, 6-12 (2019)]. In this perspective, we will focus on using pigs as the model system to review the current methodologies, applications, and challenges of mammalian germline genome editing. We will also discuss the broad implications of animal germline editing and its clinical potential.


Subject(s)
Animals, Genetically Modified/genetics , Gene Editing , Germ Cells , Swine/genetics , Animals
15.
Sci Total Environ ; 777: 146037, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33677301

ABSTRACT

Since efficient isomerization of glucose to fructose is vital for valorizing cellulose fraction of biomass to value-added chemicals, an approach of engineering aluminum-hydrochar catalyst by impregnating aluminum on swollen cellulose derived hydrochar has been studied. The results showed that Al-hydrochar calcinated at 300°C achieved fructose yield of 26.3% in acetone/H2O reaction medium. It was found that the amorphous Al structures with nano-size on the surface of the carbon microspheres were the major contributor of the catalytic activity on glucose to fructose isomerization, while the formation of Al crystal had an inhibition effect on glucose isomerization. The deactivation study of Al-hydrochar catalysts showed the exfoliation of colloidal carbon containing aluminum active catalytic sites. This finding provides a novel strategy for efficient isomerization of glucose by Al-hydrochar prepared through hydrothermal carbonization and mild calcination activation process.


Subject(s)
Aluminum , Cellulose , Carbon , Catalysis , Glucose , Isomerism , Temperature
16.
ACS Nano ; 15(3): 5138-5146, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33620212

ABSTRACT

The discovery of Dirac semimetal has stimulated bourgeoning interests for exploring exotic quantum-transport phenomena, holding great promise for manipulating the performance of photoelectric devices that are related to nontrivial band topology. Nevertheless, it still remains elusive on both the device implementation and immediate results, with some enhanced or technically applicable electronic properties signified by the Dirac fermiology. By means of Pt doping, a type-II Dirac semimetal Ir1-xPtxTe2 with protected crystal structure and tunable Fermi level has been achieved in this work. It has been envisioned that the metal-semimetal-metal device exhibits an order of magnitude performance improvement at terahertz frequency when the Fermi level is aligned with the Dirac node (i.e., x ∼ 0.3) and a room-temperature photoresponsivity of 0.52 A·W-1 at 0.12 THz and 0.45 A·W-1 at 0.3 THz, which benefited from the excitation of type-II Dirac fermions. Furthermore, van der Waals integration with Dirac semimetals exhibits superb performance with noise equivalent power less than 24 pW·Hz-0.5, rivaling the state-of-the-art detectors. Our work provides a route to explore the nontrivial topology of Dirac semimetal for addressing targeted applications in imaging and biomedical sensing across a terahertz gap.

17.
Mol Hortic ; 1(1): 4, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-37789408

ABSTRACT

Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation. The main functions of vacuoles include maintaining cell acidity and turgor pressure, regulating the storage and transport of substances, controlling the transport and localization of key proteins through the endocytic and lysosomal-vacuolar transport pathways, and responding to biotic and abiotic stresses. Further, proteins localized either in the tonoplast (vacuolar membrane) or inside the vacuole lumen are critical for fruit quality. In this review, we summarize and discuss some of the emerging functions and regulatory mechanisms associated with plant vacuoles, including vacuole biogenesis, vacuole functions in plant growth and development, fruit quality, and plant-microbe interaction, as well as some innovative research technology that has driven advances in the field. Together, the functions of plant vacuoles are important for plant growth and fruit quality. The investigation of vacuole functions in plants is of great scientific significance and has potential applications in agriculture.

18.
Nat Biomed Eng ; 5(2): 134-143, 2021 02.
Article in English | MEDLINE | ID: mdl-32958897

ABSTRACT

The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering/methods , Germ Cells/metabolism , Sus scrofa/genetics , Sus scrofa/virology , Transplantation, Heterologous , Animals , CRISPR-Associated Protein 9/genetics , Cells, Cultured , Galactosyltransferases/genetics , Gene Knockout Techniques , Mixed Function Oxygenases/genetics , N-Acetylgalactosaminyltransferases/genetics , Sus scrofa/immunology
19.
Reproduction ; 159(4): 383-396, 2020 04.
Article in English | MEDLINE | ID: mdl-31990668

ABSTRACT

Accurate chromosome segregation relies on correct chromosome-microtubule interactions within a stable bipolar spindle apparatus. Thus, exposure to spindle disrupting compounds can impair meiotic division and genomic stability in oocytes. The endocrine disrupting activity of bisphenols such as bisphenol A (BPA) is well recognized, yet their damaging effects on spindle microtubules (MTs) is poorly understood. Here, we tested the effect(s) of acute exposure to BPA and bisphenol F (BPF) on assembled spindle stability in ovulated oocytes. Brief (4 h) exposure to increasing concentrations (5, 25, and 50 µg/mL) of BPA or BPF disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with highly unfocused poles and fragmented pericentrin. The chromosomes remained congressed in an abnormally elongated metaphase-like configuration, yet normal end-on chromosome-MT attachments were reduced in BPF-treated oocytes. Live-cell imaging revealed a rapid onset of bisphenol-mediated spindle MT disruption that was reversed upon compound removal. Moreover, MT stability and regrowth were impaired in BPA-exposed oocytes, with few cold-stable MTs and formation of multipolar spindles upon MT regrowth. MT-associated kinesin-14 motor protein (HSET/KIFC1) labeling along the spindle was also lower in BPA-treated oocytes. Conversely, cold stable MTs and HSET labeling persisted after BPF exposure. Notably, inhibition of Aurora Kinase A limited bisphenol-mediated spindle pole widening, revealing a potential interaction. These results demonstrate rapid MT disrupting activity by bisphenols, which is highly detrimental to meiotic spindle stability and organization. Moreover, we identify an important link between these defects and altered distribution of key spindle associated factors as well as Aurora Kinase A activity.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Oocytes/drug effects , Phenols/toxicity , Spindle Apparatus/drug effects , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/metabolism , Female , Male , Mice, Inbred C57BL , Mice, Inbred DBA
20.
Nucleic Acids Res ; 46(22): e131, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30551175

ABSTRACT

Extrachromosomal circular DNA (eccDNA) and ring chromosomes are genetic alterations found in humans with genetic disorders. However, there is a lack of genetic engineering tools to recapitulate and study the biogenesis of eccDNAs. Here, we created a dual-fluorescence biosensor cassette, which upon the delivery of pairs of CRISPR/Cas9 guide RNAs, CRISPR-C, allows us to study the biogenesis of a specific fluorophore expressing eccDNA in human cells. We show that CRISPR-C can generate functional eccDNA, using the novel eccDNA biosensor system. We further reveal that CRISPR-C also can generate eccDNAs from intergenic and genic loci in human embryonic kidney 293T cells and human mammary fibroblasts. EccDNAs mainly forms by end-joining mediated DNA-repair and we show that CRISPR-C is able to generate endogenous eccDNAs in sizes from a few hundred base pairs and ranging up to 207 kb. Even a 47.4 megabase-sized ring chromosome 18 can be created by CRISPR-C. Our study creates a new territory for CRISPR gene editing and highlights CRISPR-C as a useful tool for studying the cellular impact, persistence and function of eccDNAs.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Circular/genetics , Gene Editing/methods , Base Sequence , Biosensing Techniques , CRISPR-Associated Protein 9/metabolism , Cell Line , Chromosomes, Human, Pair 18/chemistry , Chromosomes, Human, Pair 18/metabolism , DNA End-Joining Repair , DNA, Circular/metabolism , Fibroblasts , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Genes, Reporter , Genetic Loci , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genome, Human , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...