Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Public Health ; 12: 1365089, 2024.
Article in English | MEDLINE | ID: mdl-38751578

ABSTRACT

Background: Families of children with congenital heart disease (CHD) face tremendous stressors in the process of coping with the disease, which threatens the health of families of children with CHD. Studies have shown that nursing interventions focusing on family stress management can improve parents' ability to cope with illness and promote family health. At present, there is no measuring tool for family stressors of CHD. Methods: The items of the scale were generated through qualitative interviews and a literature review. Initial items were evaluated by seven experts to determine content validity. Factor analysis and reliability testing were conducted with a convenience sample of 670 family members. The criterion-related validity of the scale was calculated using scores on the Self-Rating Anxiety Scale (SAS). Results: The CHD Children's Family Stressor Scale consisted of six dimensions and 41 items. In the exploratory factor analysis, the cumulative explained variance of the six factors was 61.085%. In the confirmatory factor analysis, the six factors in the EFA were well validated, indicating that the model fits well. The correlation coefficient between CHD Children's Family Stressor Scale and SAS was r = 0.504 (p < 0.001), which indicated that the criterion-related validity of the scale was good. In the reliability test, Cronbach's α coefficients of six sub-scales were 0.774-0.940, and the scale-level Cronbach's α coefficient value was 0.945. Conclusion: The study indicates that the CHD Children's Family Stressor Scale is valid and reliable, and it is recommended for use in clinical practice to assess CHD children's family stressors.


Subject(s)
Heart Defects, Congenital , Psychometrics , Stress, Psychological , Humans , Heart Defects, Congenital/psychology , Female , Surveys and Questionnaires , Male , Reproducibility of Results , Child , Adult , Adaptation, Psychological , Factor Analysis, Statistical , Family/psychology , Child, Preschool , Parents/psychology , Adolescent , Middle Aged
2.
Angew Chem Int Ed Engl ; : e202406597, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757727

ABSTRACT

Artificial interfaces provide a comprehensive approach to controlling zinc dendrite and surface corrosion in zinc-based aqueous batteries (ZABs). However, due to consistent volume changes during zinc plating/stripping, traditional interfacial layers cannot consistently adapt to the dendrite surface, resulting in uncontrolled dendrite growth and hydrogen evolution. Herein, dynamic covalent bonds exhibit the Janus effect towards zinc deposition at different current densities, presenting a holistic strategy for stabilizing zinc anode. The PBSC intelligent artificial interface consisting of dynamic B-O covalent bonds is developed on zinc anode to mitigate hydrogen evolution and restrict dendrite expansion. Owing to the reversible dynamic bonds, PBSC exhibits shape self-adaptive characteristics at low current rates, which rearranges the network to accommodate volume changes during zinc plating/stripping, resisting hydrogen evolution. Moreover, the rapid association of B-O dynamic bonds enhances mechanical strength at dendrite tips, presenting a shear-thickening effect and suppressing further dendrite growth at high current rates. Therefore, the assembled symmetrical battery with PBSC maintains a stable cycle of 4500 hours without significant performance degradation and the PBSC@Zn||V2O5 pouch cell demonstrates a specific capacity exceeding 170 mAh g-1. Overall, the intelligent interface with dynamic covalent bonds provides innovative approaches for zinc anode interfacial engineering and enhances cycling performance.

3.
Front Microbiol ; 14: 1241436, 2023.
Article in English | MEDLINE | ID: mdl-37789857

ABSTRACT

Understanding the rhizosphere soil microbial community and its relationship with the bulk soil microbial community is critical for maintaining soil health and fertility and improving crop yields in Karst regions. The microbial communities in the rhizosphere and bulk soils of a Chinese cabbage (Brassica campestris) plantation in a Karst region, as well as their relationships with soil nutrients, were examined in this study using high-throughput sequencing technologies of 16S and ITS amplicons. The aim was to provide theoretical insights into the healthy cultivation of Chinese cabbage in a Karst area. The findings revealed that the rhizosphere soil showed higher contents of organic matter (OM), alkaline hydrolyzable nitrogen (AN), available phosphorus (AP), total phosphorus (TP), available potassium (AK), total potassium (TK), total nitrogen (TN), catalase (CA), urease (UR), sucrase (SU), and phosphatase (PHO), in comparison with bulk soil, while the pH value showed the opposite trend. The diversity of bacterial and fungal communities in the bulk soil was higher than that in the rhizosphere soil, and their compositions differed between the two types of soil. In the rhizosphere soil, Proteobacteria, Acidobacteriota, Actinobacteriota, and Bacteroidota were the dominant bacterial phyla, while Olpidiomycota, Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungal phyla. In contrast, the bulk soil was characterized by bacterial dominance of Proteobacteria, Acidobacteriota, Chloroflexi, and Actinobacteriota and fungal dominance of Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota. The fungal network was simpler than the bacterial network, and both networks exhibited less complexity in the rhizosphere soil compared with the bulk soil. Moreover, the rhizosphere soil harbored a higher proportion of beneficial Rhizobiales. The rhizosphere soil network was less complicated than the network in bulk soil by building a bacterial-fungal co-occurrence network. Furthermore, a network of relationships between soil properties and network keystone taxa revealed that the rhizosphere soil keystone taxa were more strongly correlated with soil properties than those in the bulk soil; despite its lower complexity, the rhizosphere soil contains a higher abundance of bacteria which are beneficial for cabbage growth compared with the bulk soil.

4.
ACS Nano ; 17(16): 15905-15917, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37565626

ABSTRACT

Metal-organic frameworks (MOFs) show tremendous promise for drug delivery due to their structural and functional versatility. However, MOFs are usually used as biologically inert carriers in most cases. The creation of intrinsically immunostimulatory MOFs remains challenging. In this study, a facile and green synthesis method is proposed for the preparation of a manganese ion (Mn2+)-based immunostimulatory MOF (ISAMn-MOF) for cancer metalloimmunotherapy. ISAMn-MOF significantly facilitates the activation of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) related genes and signaling pathways in bone-marrow-derived dendritic cells (BMDCs). BMDCs treated with ISAMn-MOF secrete 4-fold higher type I interferon and 2- to 16-fold higher proinflammatory cytokines than those treated with equivalent MnCl2. ISAMn-MOF alone or its combination with immune checkpoint antibodies significantly suppresses tumor growth and metastasis and prolongs mouse survival. Mechanistic studies indicate that ISAMn-MOF treatment facilitates the infiltration of stimulatory immune cells in tumors and lymphoid organs. This study provides insight into the design of bioactive MOFs for improved cancer metalloimmunotherapy.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Mice , Animals , Metal-Organic Frameworks/pharmacology , Manganese/pharmacology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Neoplasms/drug therapy
5.
BMC Microbiol ; 23(1): 194, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468849

ABSTRACT

BACKGROUND: Microorganisms are of significant importance in soil. Yet their association with specific vegetable types remains poorly comprehended. This study investigates the composition of bacterial and fungal communities in soil by employing high-throughput sequencing of 16 S rRNA genes and ITS rRNA genes while considering the cultivation of diverse vegetable varieties. RESULTS: The findings indicate that the presence of cultivated vegetables influenced the bacterial and fungal communities leading to discernible alterations when compared to uncultivated soil. In particular, the soil of leafy vegetables (such as cabbage and kale) exhibited higher bacterial α-diversity than melon and fruit vegetable (such as cucumber and tomato), while fungal α-diversity showed an inverse pattern. The prevailing bacterial phyla in both leafy vegetable and melon and fruit vegetable soils were Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. In leafy vegetable soil, dominant fungal phyla included Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota whereas in melon and fruit vegetable soil. Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota held prominence. Notably, the relative abundance of Ascomycota was lower in leafy vegetable soil compared to melon and fruit vegetable soil. Moreover, leafy vegetable soil exhibited a more complex and stable co-occurrence network in comparison to melon and fruit vegetable soil. CONCLUSION: The findings enhance our understanding of how cultivated soil bacteria and fungi respond to human disturbance, thereby providing a valuable theoretical basis for soil health in degraded karst areas of southwest China.


Subject(s)
Ascomycota , Basidiomycota , Humans , Soil , Vegetables , Bacteria/genetics , Fungi/genetics , China , Soil Microbiology
6.
Ecotoxicol Environ Saf ; 256: 114884, 2023 May.
Article in English | MEDLINE | ID: mdl-37054472

ABSTRACT

Ensuring the safe production of food and oil crops in soils with elevated cadmium (Cd) content in karst regions is crucial. We tested a field experiment to examine the long-term remediation effects of compound microorganisms (CM), strong anion exchange adsorbent (SAX), processed oyster shell (POS), and composite humic acids (CHA) on Cd contamination in paddy fields under a rice-oilseed rape rotation system. In comparison to the control group (CK), the application of amendments significantly increased soil pH, cation exchange capacity (CEC), and soil organic matter (SOM) content while markedly decreasing the content of available Cd (ACd). During the rice cultivation season, Cd was predominantly concentrated in the roots. Relative to the control (CK), the Cd content in each organ was significantly reduced. The Cd content in brown rice decreased by 19.18-85.45%. The Cd content in brown rice following different treatments exhibited the order of CM > POS > CHA > SAX, which was lower than the Chinese Food Safety Standard (GB 2762-2017) (0.20 mg/kg). Intriguingly, during the oilseed rape cultivation season, we discovered that oilseed rape possesses potential phytoremediation capabilities, with Cd mainly accumulating in roots and stems. Notably, CHA treatment alone significantly decreased the Cd content in oilseed rape grains to 0.156 mg/kg. CHA treatment also maintained soil pH and SOM content, consistently reduced soil ACd content, and stabilized Cd content in RSF within the rice-oilseed rape rotation system. Importantly, CHA treatment not only enhances crop production but also has a low total cost (1255.230 US$/hm2). Our research demonstrated that CHA provides a consistent and stable remediation effect on Cd-contaminated rice fields within the crop rotation system, as evidenced by the analysis of Cd reduction efficiency, crop yield, soil environmental change, and total cost. These findings offer valuable guidance for sustainable soil utilization and safe production of grain and oil crops in the context of high Cd concentrations in karst mountainous regions.


Subject(s)
Brassica napus , Cadmium , Oryza , Soil Pollutants , Cadmium/toxicity , Calcium Carbonate , Crops, Agricultural , Humic Substances/analysis , Soil/chemistry , Soil Pollutants/analysis
7.
Angew Chem Int Ed Engl ; 62(20): e202302436, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36916443

ABSTRACT

Enzyme immobilization has been demonstrated to be a favorable protocol for promoting the industrialization of bioactive molecules, but still with formidable challenge. Addressing this challenge, we create a dynamic defect generation strategy for enzyme immobilization by using the dissociation equilibrium of metal-organic frameworks (MOFs) mediated by enzymes. Enzymes can act as "macro ligands" to generate competitive coordination against original ligands, along with the release of metal clusters of MOFs to generate defects, hence promoting the gradual transport of enzymes from the surface to inside. Various enzymes can be efficiently immobilized in MOFs to afford composites with good enzymatic activities, protective performances and exceptional reusabilities. Moreover, multienzyme bioreactors capable of efficient cascade reactions can also be generated. This study provides new opportunities to construct highly efficient biocatalysts incorporating different types of enzymes.


Subject(s)
Metal-Organic Frameworks , Ligands , Hydrolysis , Enzymes, Immobilized , Catalysis
8.
Stress Health ; 39(5): 989-999, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36809656

ABSTRACT

The objective of this study was to better understand the stressors in families of children with congenital heart disease (CHD) to assist with formulating targeted stress management plans for such families. A descriptive qualitative study was undertaken at a tertiary referral hospital in China. Following purposeful sampling, interviews were conducted with 21 parents of children with CHD regarding the stressors in their families. Following content analysis, 11 themes were generated from the data and categorised into six main domains: the initial stressor and associated hardships, normative transitions, prior strains, the consequences of family efforts to cope, intrafamily and social ambiguity, and sociocultural values. The 11 themes include confusion regarding the disease, hardships encountered during treatment, the heavy financial burden, the unusual growth track of the child due to the disease, normal events becoming abnormal for the family, impaired family functioning, family vulnerability, family resilience, family boundary ambiguity induced by role alteration, a lack of knowledge about community support and family stigma. Various and complex stressors exist for families of children with CHD. Medical personnel should fully evaluate the stressors and take targeted measures before implementing family stress management practices. It is also necessary to focus on the posttraumatic growth of families of children with CHD and strengthen resilience. Moreover, family boundary ambiguity and a lack of knowledge about community support should not be ignored, and further research is needed to explore these variables. Most importantly, policymakers and healthcare providers should adopt a range of strategies to address the stigma of being in a family of a child with CHD.


Subject(s)
Heart Defects, Congenital , Resilience, Psychological , Child , Humans , Family Health , Qualitative Research , Stress, Psychological , Parents
9.
BMC Genomics ; 23(1): 499, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35810309

ABSTRACT

BACKGROUND: The trihelix family of transcription factors plays essential roles in the growth, development, and abiotic stress response of plants. Although several studies have been performed on the trihelix gene family in several dicots and monocots, this gene family is yet to be studied in Chenopodium quinoa (quinoa). RESULTS: In this study, 47 C. quinoa trihelix (CqTH) genes were in the quinoa genome. Phylogenetic analysis of the CqTH and trihelix genes from Arabidopsis thaliana and Beta vulgaris revealed that the genes were clustered into five subfamilies: SIP1, GTγ, GT1, GT2, and SH4. Additionally, synteny analysis revealed that the CqTH genes were located on 17 chromosomes, with the exception of chromosomes 8 and 11, and 23 pairs of segmental duplication genes were detected. Furthermore, expression patterns of 10 CqTH genes in different plant tissues and at different developmental stages under abiotic stress and phytohormone treatment were examined. Among the 10 genes, CqTH02, CqTH25, CqTH18, CqTH19, CqTH25, CqTH31, and CqTH36, were highly expressed in unripe achenes 21 d after flowering and in mature achenes compared with other plant tissues. Notably, the 10 CqTH genes were upregulated in UV-treated leaves, whereas CqTH36 was consistently upregulated in the leaves under all abiotic stress conditions. CONCLUSIONS: The findings of this study suggest that gene duplication could be a major driver of trihelix gene evolution in quinoa. These findings could serve as a basis for future studies on the roles of CqTH transcription factors and present potential genetic markers for breeding stress-resistant and high-yielding quinoa varieties.


Subject(s)
Arabidopsis , Chenopodium quinoa , Arabidopsis/genetics , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
10.
BMC Genomics ; 23(1): 415, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655134

ABSTRACT

BACKGROUND: As transcription factors, the TCP genes are considered to be promising targets for crop enhancement for their responses to abiotic stresses. However, information on the systematic characterization and functional expression profiles under abiotic stress of TCPs in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) is limited. RESULTS: In this study, we identified 26 FtTCPs and named them according to their position on the chromosomes. Phylogenetic tree, gene structure, duplication events, and cis-acting elements were further studied and syntenic analysis was conducted to explore the bioinformatic traits of the FtTCP gene family. Subsequently, 12 FtTCP genes were selected for expression analysis under cold, dark, heat, salt, UV, and waterlogging (WL) treatments by qRT-PCR. The spatio-temporal specificity, correlation analysis of gene expression levels and interaction network prediction revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stresses. Moreover, subcellular localization confirmed that FtTCP15 and FtTCP18 localized in the nucleus function as transcription factors. CONCLUSIONS: In this research, 26 TCP genes were identified in Tartary buckwheat, and their structures and functions have been systematically explored. Our results reveal that the FtTCP15 and FtTCP18 have special cis-elements in response to abiotic stress and conserved nature in evolution, indicating they could be promising candidates for further functional verification under multiple abiotic stresses.


Subject(s)
Fagopyrum , Fagopyrum/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism
11.
Mar Environ Res ; 178: 105646, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35597048

ABSTRACT

Sea urchins sense alarm cues extracted from crushed conspecifics and perform anti-predation behaviors in exposure to alarm cues. This indicates of the fitness benefits of alarm cues in sea urchins. The present study investigated whether fitness costs of alarm cues exist in fertilization, hatchability, deformity, and larval size of the sea urchin Mesocentrotus nudus. In the present study, we found that fertilization and hatching rates were significantly lower in the group with alarm cues than those in the group without alarm cues, indicating that fitness costs of alarm cues exist in sea urchins. However, there was no significant difference in deformity rate, larval length, stomach length, and stomach width of M. nudus with and without alarm cues. The group with alarm cues showed significantly shorter larval width than the group without alarm cues. This indicates that smaller larvae of sea urchins more probably survive in the environment with alarm cues. The present study reveals that fitness costs of alarm cues exist in sea urchins and sheds light on the ecological roles of alarm cues in kelp bed ecosystems.


Subject(s)
Cues , Ecosystem , Animals , Fertilization , Larva , Sea Urchins
12.
Biology (Basel) ; 11(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35453703

ABSTRACT

The energetic link in the benthic community is based on physiological characteristics of the low food absorption efficiency of sea urchins. Low food absorption efficiency of sea urchins is correlated with the activity of digestive enzymes and the duration of food in their gut. Thus, the digestive enzymes activities (pepsin and amylase enzyme activities) and gut emptying are important indicators in assessing nutrient digestion and absorption in sea urchins. In the present study, the relationship between these indicators and molecules related to digestive physiology were quantified in sea urchins. We found (1) an inter-regulatory relationship existed between Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), and serotonin (5-hydroxytryptamine; 5-HT) in the gut of Strongylocentrotus intermedius; (2) digestive enzyme activities were negatively correlated with the TRPA1 and concentration of 5-HT in the gut of S. intermedius; (3) gut emptying rate was positively correlated with TRPA1 and concentration of 5-HT in the gut of S. intermedius. The present study revealed that the digestion and absorption of food are correlated with the TRPA1 and 5-HT in the gut of S. intermedius, which provides valuable information about the digestive physiology of sea urchins. This novel finding is relevant to understanding the low food digestibility of sea urchins. It also provides valuable information to the digestive physiology of sea urchins, which are key to maintaining the stability of food webs in the marine ecosystem.

13.
BMC Genomics ; 23(1): 318, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35448973

ABSTRACT

BACKGROUND: The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS: In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS: In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.


Subject(s)
Arabidopsis , Basic-Leucine Zipper Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Nicotiana/genetics , Nicotiana/metabolism
14.
BMC Genomics ; 22(1): 738, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34649496

ABSTRACT

BACKGROUND: Transcription factors, including trihelix transcription factors, play vital roles in various growth and developmental processes and in abiotic stress responses in plants. The trihelix gene has been systematically studied in some dicots and monocots, including Arabidopsis, tomato, chrysanthemum, soybean, wheat, corn, rice, and buckwheat. However, there are no related studies on sorghum. RESULTS: In this study, a total of 40 sorghum trihelix (SbTH) genes were identified based on the sorghum genome, among which 34 were located in the nucleus, 5 in the chloroplast, 1 (SbTH38) in the cytoplasm, and 1 (SbTH23) in the extracellular membrane. Phylogenetic analysis of the SbTH genes and Arabidopsis and rice trihelix genes indicated that the genes were clustered into seven subfamilies: SIP1, GTγ, GT1, GT2, SH4, GTSb8, and orphan genes. The SbTH genes were located in nine chromosomes and none on chromosome 10. One pair of tandem duplication gene and seven pairs of segmental duplication genes were identified in the SbTH gene family. By qPCR, the expression of 14 SbTH members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. Except for the leaves in which the genes were upregulated after only 2 h exposure to high temperature, the 12 SbTH genes were significantly upregulated in the stems of sorghum seedlings after 24 h under the other abiotic stress conditions. Among the selected genes, SbTH10/37/39 were significantly upregulated, whereas SbTH32 was significantly downregulated under different stress conditions. CONCLUSIONS: In this study, we identified 40 trihelix genes in sorghum and found that gene duplication was the main force driving trihelix gene evolution in sorghum. The findings of our study serve as a basis for further investigation of the functions of SbTH genes and providing candidate genes for stress-resistant sorghum breeding programmes and increasing sorghum yield.


Subject(s)
Sorghum , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sorghum/genetics , Sorghum/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Mar Environ Res ; 171: 105476, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34534801

ABSTRACT

A cost-effective approach to controlling foraging and feeding behaviors of sea urchins is essential for the management of kelp beds. Laboratory experiments were designed to investigate whether alarm cues from crushed conspecific urchins can effectively prevent the foraging and feeding behaviors of the sea urchin Mesocentrotus nudus under the static seawater condition. The present study found that the number of M. nudus that foraged successfully was significantly lower when alarm cues were placed between the kelp and the sea urchins. This result indicates that alarm cues could play an important role in critical kelp-bed areas. It probably prevents sea urchins from foraging by acting as a barrier. Further, we found that alarm cues around the kelp significantly affected foraging behavior of M. nudus, indicating that the alarm cues around the kelp are a potential effective way to prevent sea urchins from foraging for the kelp. In addition, the number of sea urchins that stopped feeding was significantly higher in the group in the presence of alarm cues than that in the control group. This indicates that alarm cues may have an application in stopping sea urchins from feeding. However, there was no significant difference of Aristotle's lantern reflex between the groups with and without alarm cues. These results indicate that alarm cues greatly affect foraging behavior, but not Aristotle's lantern reflex of M. nudus. All together, the present study suggests that alarm cues have an application potential in the management of the kelp beds as green engineering. Future studies are essential to further investigate the chemical basis of the alarm cues of sea urchins for the application in large-scale.


Subject(s)
Cues , Kelp , Animals , Feeding Behavior , Sea Urchins
16.
Sci Rep ; 11(1): 15654, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341391

ABSTRACT

Conspecific alarm cues crushed from Mesocentrotus nudus prevent sea urchins from foraging the kelp, but do not repel them far away from the kelp. However, it remains largely unknown of whether this phenomenon was affected by conspecific alarm cues or by the attraction of the kelp. The present study found no significant difference in the duration in the danger area with or without the kelp around conspecific alarm cues. This suggests that the phenomenon is the strategy of sea urchins but not by the attraction of kelp. We found that conspecific alarm cues appearing between the kelp and sea urchins significantly affected foraging behavior of sea urchins fasted for 21 days. This indicates that conspecific alarm cues can effectively prevent fasted sea urchins from foraging the kelp. Further, there was no correlation between foraging velocity and the duration in the danger area. Pearson correlation analysis revealed no significant correlation between foraging velocity and the duration in the safety area close to different amounts of conspecific alarm cues, suggesting that conspecific alarm cues prevent sea urchins with strong foraging ability to forage. Collectively, the present results indicate that conspecific alarm cues as highly available biological barriers are cost-effective approaches to preventing overgrazing of sea urchins in the protection of kelp beds ecosystems. Notably, the present study is a short-term laboratory investigation that does not consider the complexity of natural conditions. Future studies are essential to test the present findings in the field.


Subject(s)
Cues , Ecosystem , Sea Urchins , Animals , Food Chain , Kelp
17.
Sci Rep ; 11(1): 15116, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34302013

ABSTRACT

Poor growth and disease transmission of small sea urchins Strongylocentrotus intermedius in summer greatly hamper the production efficiency of the longline culture. Reducing the adverse effects of high stocking density while maintaining high biomass is essential to address these problems. Here, we conducted a laboratory experiment to simulate the multi-layer culture for sea urchins at ambient high temperatures (from 22.2 to 24.5 °C) in summer for ~ 7 weeks. Survival, body size, lantern growth, gut weight, food consumption, Aristotle's lantern reflex, 5-hydroxytryptamine concentration, pepsin activity and gut morphology were subsequently evaluated. The present study found that multi-layer culture led to significantly larger body size than those without multi-layer culture (the control group). This was probably because of the greater feeding capacity (indicated by lantern growth and Aristotle's lantern reflex) and food digestion (indicated by morphology and pepsin activity of gut) in the multi-layer cultured sea urchins. These results indicate that multi-layer is an effective approach to improving the growth efficiency of sea urchins at high temperatures. We assessed whether eliminating interaction further improve these commercially important traits of sea urchins in multi-layer culture. This study found that eliminating interactions displayed greater body size and Aristotle's lantern reflex than those not separated in the multi-layer culture. This approach also significantly reduced the morbidity compared with the control group. These novel findings indicate that eliminating interactions in multi-layer culture greatly contributes to the growth and disease prevention of sea urchins at high temperatures. The present study establishes a new technique for the longline culture of sea urchins in summer and provides valuable information into the longline culture management of other commercially important species (e.g. scallops, abalones and oysters).


Subject(s)
Sea Urchins/physiology , Strongylocentrotus/physiology , Animals , Body Size/physiology , Food , Hot Temperature , Phenotype , Seasons
18.
Medicine (Baltimore) ; 100(19): e25896, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34106647

ABSTRACT

BACKGROUND: Early diagnosis of cholecystolithiasis is significant for prevention of further development of situation. Ultrasound is the best choice for the diagnosis of cholecystolithiasis with a sensitivity of >95% and specificity of practically 100%. However, ultrasound is not perfect for it is not so clear sometimes. So, MRI is needed to assist the diagnosing of cholecystolithiasis. Some studies have been conducted to investigate the diagnostic value of ultrasound combined with MRI in cholecystolithiasis, however, the evidence was not enough. METHODS: We will search the following sources for the identification of trials: The Cochrane Library, PubMed, EMBASE, Chinese Biomedical Literature Database (CBM), Chinese National Knowledge Infrastructure Database (CNKI), Chinese Science and Technique Journals Database (VIP), and the Wanfang Database. The searches were limited to articles published before 1st, April, 2021, and the language were limited to Chinese and English. Statistical analyses will be conducted with Sata 14.0 software and the evaluation of the quality of the included studies will be performed by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). RESULTS: This study will provide a rational synthesis of current evidences for MRI combined with ultrasound for cholecystolithiasis. CONCLUSION: The conclusion of this study will provide evidence for the diagnostic value of MRI combined with ultrasound for cholecystolithiasis. ETHICS AND DISSEMINATION: This protocol will not evaluate individual patient information or affect patient rights and therefore does not require ethical approval. Results from this review will be disseminated through peer-reviewed journals and conference reports. PROSPERO REGISTRATION NUMBER: INPLASY202130003.


Subject(s)
Cholecystolithiasis/diagnosis , Magnetic Resonance Imaging/methods , Ultrasonography/methods , Cholecystolithiasis/diagnostic imaging , Humans , Multimodal Imaging , Research Design , Meta-Analysis as Topic
19.
Sci Rep ; 11(1): 9985, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976309

ABSTRACT

Interaction among sea urchins remains largely uninvestigated, although the aggregation of sea urchins is common. In the present study, 1, 15 and 30 sea urchins Strongylocentrotus intermedius (11.06 ± 0.99 mm in test diameter) were placed in a 1 m2 circular tank, respectively. Movement behaviors were recorded for 12 min to investigate potential interactions among sea urchins. After the 12-min control period, we added food cues into the tank and recorded the changes in sea urchins' behaviors. For the first time, we here quantified the interactions among sea urchins in laboratory and found that the interactions varied with food cues and with different densities. The sea urchins dispersed in random directions after being released. There was no significant difference in the movement speed and the displacement of sea urchins among the three density groups (1, 15 and 30 ind/m2). The interaction occurred when sea urchins randomly contacted with the conspecifics and slowed down the movement speed. The speed of sea urchins after physical contacts decreased by an average of 40% in the density of 15 ind/m2 and 17% in the density of 30 ind/m2. This interaction resulted in significantly higher randomness in the movement direction and lower movement linearity in 15 and 30 ind/m2 than in 1 ind/m2. After the introduction of food cues, the movement speed, displacement and dispersal distance of sea urchin groups decreased significantly in all the three densities. The dispersal distance and expansion speed of sea urchins were significantly lower in 30 ind/m2 than those in 15 ind/m2. The present study indicates that the interaction among sea urchins limits the movement of individual sea urchin and provides valuable information into how large groups of sea urchins are stable in places where food is plentiful.


Subject(s)
Cues , Feeding Behavior , Social Behavior , Strongylocentrotus , Animals , Population Density
20.
J Am Chem Soc ; 143(20): 7732-7739, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33985332

ABSTRACT

It is of profound significance with regard to the global energy crisis to develop new techniques and materials that can convert the chemical potential of water into other forms of energy, especially electricity. To address this challenge, we built a new type of energy transduction pathway (humidity gradients → mechanical work → electrical power) using moisture-responsive crystalline materials as the media for energy transduction. Single-crystal data revealed that a flexible zeolitic pyrimidine framework material, ZPF-2-Co, could undergo a reversible structural transformation (ß to α phase) with a large unit cell change upon moisture stimulus. Dynamic water vapor sorption analysis showed a gate-opening effect with a steep uptake at as low as 10% relative humidity (RH). The scalable green synthesis approach and the fast water vapor adsorption-desorption kinetics made ZPF-2-Co an excellent sorbent to harvest water from arid air, as verified by real water-harvesting experiments. Furthermore, we created a gradient distribution strategy to fabricate polymer-hybridized mechanical actuators based on ZPF-2-Co that could perform reversible bending deformation upon a variation of the humidity gradient. This mechanical actuator showed remarkable durability and reusability. Finally, coupling the moisture-responsive actuator with a piezoelectric transducer further converted the mechanical work into electrical power. This work offers a new type of moisture-responsive smart material for energy transduction and provides an in-depth understanding of the responsive mechanism at the molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...