Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Invest Ophthalmol Vis Sci ; 65(8): 20, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38990070

ABSTRACT

Purpose: It has been hypothesized that compromised ocular circulation in glaucoma may be concomitant of systemic changes. The purpose of this study is to test whether systemic blood flow pulse waveform patterns differ between individuals with glaucoma (GL), glaucoma suspects (GLS), and normal healthy controls (HC). Methods: The study included 35 bilateral GL, 67 bilateral GLS, 29 individuals with unilateral GL who were considered GLS in the other eye, and 44 healthy controls. Systemic pulsatile blood pressure waveforms were recorded using a finger cuff. A continuous 200 Hz plethysmography recording is made to obtain a pulse waveform. Waveform parameters were extracted using custom software from an average of eight pulse cycles. These were compared between GL, GLS, and HC groups on a per-eye basis, using generalized estimating equation models to account for intereye correlations; and plotted against disease severity by visual field linearized mean deviation (MDlin) and retinal nerve fiber layer thickness (RNFLT). Results: Averaged blood pressure was significantly lower in the HC group (mean ± standard deviation 91.7 ±11.7 mm Hg) than the GLS (102.4 ± 13.9) or GL (102.8 ± 13.7) groups, with P < 0.0001 (generalized estimating equation regression). Waveform parameters representing vascular resistance were higher in both GLS and GL groups than the HC group; and were correlated with RNFLT and MDlin (P ≤ 0.05). Conclusions: The shape of the systemic pulsatile waveform differs in individuals with GL/GLS suspects, compared to HC eyes. Blood pressure changes more rapidly in individuals with GL, which suggests higher arterial stiffness.


Subject(s)
Blood Pressure , Intraocular Pressure , Ocular Hypertension , Humans , Male , Female , Middle Aged , Blood Pressure/physiology , Intraocular Pressure/physiology , Aged , Ocular Hypertension/physiopathology , Visual Fields/physiology , Glaucoma/physiopathology , Glaucoma/diagnosis , Pulse Wave Analysis , Heart Rate/physiology , Adult , Plethysmography , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology
2.
Skeletal Radiol ; 53(9): 1761-1781, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980364

ABSTRACT

Articular cartilage damage and degeneration are among hallmark manifestations of joint injuries and arthritis, classically osteoarthritis. Cartilage compositional MRI (Cart-C MRI), a quantitative technique, which aims to detect early-stage cartilage matrix changes that precede macroscopic alterations, began development in the 1990s. However, despite the significant advancements over the past three decades, Cart-C MRI remains predominantly a research tool, hindered by various technical and clinical hurdles. This paper will review the technical evolution of Cart-C MRI, delve into its clinical applications, and conclude by identifying the existing gaps and challenges that need to be addressed to enable even broader clinical application of Cart-C MRI.


Subject(s)
Cartilage, Articular , Magnetic Resonance Imaging , Humans , Cartilage, Articular/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteoarthritis/diagnostic imaging
3.
Int J Biol Macromol ; 275(Pt 2): 133517, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960251

ABSTRACT

Reducing the risk of wound infection is an urgent issue health priority. Antibacterial polysaccharide-based hydrogels have attracted great attention for infectious wounds, attributed to their safe antimicrobial performance and natural non-toxicity and biodegradability advantages. In this study, the "all-in-one" self-adaptive and injectable cationic guar gum (CG)-based polysaccharide hydrogels (FA-TOB/CG) loaded with bioactive complexes were developed for infectious wound healing. The constructed antioxidant and antibacterial ferulic acid (FA)-tobramycin (TOB) bioactive complexes (FA-TOB) were used as the cross-linking agent and introduced into the CG matrix to construct the FA-TOB/CG hydrogel with a three-dimensional porous structure. The sterilization rates of FA-TOB/CG hydrogel against S. aureus and E. coli reached 98 % and 80 % respectively. In addition, the FA-TOB/CG also exhibits enhanced antioxidant performances (DPPH: > 40 %; ABTS: > 90 %; ·OH: > 50 %). More importantly, FA-TOB/CG hydrogel also showed the ability to sustain the release of FA and TOB. These superiorities of the FA-TOB/CG hydrogel enabled it to provide a moist wound environment and promote wound healing by eliminating bacteria, modulating the local inflammatory response, and accelerating collagen deposition and vascular regeneration. Thus, this study may enlarge a new sight for developing multifunctional dressings by incorporating bioactive complexes into polysaccharide hydrogels for infected wounds.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Galactans , Hydrogels , Mannans , Plant Gums , Wound Healing , Mannans/chemistry , Mannans/pharmacology , Plant Gums/chemistry , Galactans/chemistry , Galactans/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Bandages , Escherichia coli/drug effects , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Cations/chemistry , Mice , Injections
4.
Medicine (Baltimore) ; 103(24): e38162, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875384

ABSTRACT

This study employs CiteSpace software to analyze the research status, hotspots, and trends of primary Sjogren syndrome (pSS). Relevant publications from 1999 to 2023 were searched in the Web of Science Core Collection (WoSCC) set, followed by generating a network map using CiteSpace software to identify top authors, institutions, countries, keywords, journals, references, and research trends. A total of 3564 valid articles were included in this study. The People Republic of China had the highest number of articles (n = 524), while the University of Bergen emerged as the institution with the highest publication count (n = 94). Mariette X was identified as the author with the most publications (n = 67), whereas Vitali C received recognition as the most cited author (n = 1706). Annals of Rheumatic Diseases stood out as the journal with the highest citation count (n = 2530). Notably, an article published in the Annals of Rheumatic Diseases in 2017 garnered significant attention by being cited a remarkable 304 times. The bibliometric analysis reveals that key areas of research in pSS encompass investigating pathogenesis; advancing and applying targeted biological agents; and establishing treatment and diagnostic standards.


Subject(s)
Bibliometrics , Sjogren's Syndrome , Humans , Software
5.
Chin J Integr Med ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910190

ABSTRACT

OBJECTIVE: To investigate the inhibitory effect of Tanreqing Injection (TRQ) on the activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome in macrophages infected with influenza A virus and the underlying mechanism based on mitophagy pathway. METHODS: The inflammatory model of murine macrophage J774A.1 induced by influenza A virus [strain A/Puerto Rico/8/1934 (H1N1), PR8] was constructed and treated by TRQ, while the mitochondria-targeted antioxidant Mito-TEMPO and autophagy specific inhibitor 3-methyladenine (3-MA) were used as controls to intensively study the anti-inflammatory mechanism of TRQ based on mitophagy-mitochondrial reactive oxygen species (mtROS)-NLRP3 inflammasome pathway. The levels of NLRP3, Caspase-1 p20, microtubule-associated protein 1 light chain 3 II (LC3II) and P62 proteins were measured by Western blot. The release of interleukin-1ß (IL-1ß) was tested by enzyme linked immunosorbent assay, the mtROS level was detected by flow cytometry, and the immunofluorescence and co-localization of LC3 and mitochondria were observed under confocal laser scanning microscopy. RESULTS: Similar to the effect of Mito-TEMPO and contrary to the results of 3-MA treatment, TRQ could significantly reduce the expressions of NLRP3, Caspase-1 p20, and autophagy adaptor P62, promote the expression of autophagy marker LC3II, enhance the mitochondrial fluorescence intensity, and inhibit the release of mtROS and IL-1ß (all P<0.01). Moreover, LC3 was co-localized with mitochondria, confirming the type of mitophagy. CONCLUSION: TRQ could reduce the level of mtROS by promoting mitophagy in macrophages infected with influenza A virus, thus inhibiting the activation of NLRP3 inflammasome and the release of IL-1ß, and attenuating the inflammatory response.

6.
Bioengineering (Basel) ; 11(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927762

ABSTRACT

Bone marrow edema-like lesions (BMEL) in the knee have been linked to the symptoms and progression of osteoarthritis (OA), a highly prevalent disease with profound public health implications. Manual and semi-automatic segmentations of BMELs in magnetic resonance images (MRI) have been used to quantify the significance of BMELs. However, their utilization is hampered by the labor-intensive and time-consuming nature of the process as well as by annotator bias, especially since BMELs exhibit various sizes and irregular shapes with diffuse signal that lead to poor intra- and inter-rater reliability. In this study, we propose a novel unsupervised method for fully automated segmentation of BMELs that leverages conditional diffusion models, multiple MRI sequences that have different contrast of BMELs, and anomaly detection that do not rely on costly and error-prone annotations. We also analyze BMEL segmentation annotations from multiple experts, reporting intra-/inter-rater variability and setting better benchmarks for BMEL segmentation performance.

8.
Int Immunopharmacol ; 134: 112268, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759371

ABSTRACT

Piglets receive far less hydroxyproline (Hyp) from a diet after weaning than they obtained from sow's milk prior to weaning, suggesting that Hyp may play a protective role in preserving intestinal mucosal homeostasis. This study aimed to evaluate the effect of Hyp on intestinal barrier function and its associated gut microbiota and metabolites in early-weaned piglets. Eighty weaned piglets were divided into four groups and fed diets containing different Hyp levels (0 %, 0.5 %, 1 %, or 2 %) for 21 days. Samples, including intestinal contents, tissues, and blood, were collected on day 7 for analysis of microbial composition, intestinal barrier function, and metabolites. We demonstrated that dietary supplementation with 2 % Hyp improved the feed conversion ratio and reduced the incidence of diarrhea in early-weaned piglets compared to the control group. Concurrently, Hyp enhanced intestinal barrier function by facilitating tight junction protein (zonula occludens (ZO)-1 and occludin) expression and mucin production in the jejunal, ileal, and colonic mucosas. It also improved mucosal immunity (by increasing the amount of secretory IgA (sIgA) and the ratio of CD4+/CD8+ T lymphocytes and decreasing NF-κB phosphorylation) and increased antioxidant capacity (by raising total antioxidant capacity (T-AOC) and glutathione levels) in the intestinal mucosa. In addition, Hyp supplementation resulted in an increase in the levels of glycine, glutathione, and glycine-conjugated bile acids, while decreasing the concentrations of cortisol and methionine sulfoxide in plasma. Intriguingly, piglets fed diet containing Hyp exhibited a remarkable increase in the abundance of probiotic Enterococcus faecium within their colonic contents. This elevation occurred alongside an attenuation of pro-inflammatory responses and an enhancement in intestinal barrier integrity. Further, these changes were accompanied by a rise in anti-inflammatory metabolites, specifically glycochenodeoxycholic acid and guanosine, along with a suppression of pro-inflammatory lipid peroxidation products, including (12Z)-9,10-dihydroxyoctadec-12-enoic acid (9,10-DHOME) and 13-L-hydroperoxylinoleic acid (13(S)-HPODE). In summary, Hyp holds the capacity to enhance the intestinal barrier function in weaned piglets; this effect is correlated with changes in the gut microbiota and metabolites. Our findings provide novel insights into the role of Hyp in maintaining gut homeostasis, highlighting its potential as a dietary supplement for promoting intestinal health in early-weaned piglets.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Hydroxyproline , Intestinal Mucosa , Weaning , Animals , Gastrointestinal Microbiome/drug effects , Swine , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Hydroxyproline/metabolism , Diarrhea/veterinary , Diarrhea/immunology , Immunity, Mucosal/drug effects , Diet/veterinary
9.
Polymers (Basel) ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794508

ABSTRACT

Bacterial infections have a serious impact on public health. It is urgent to develop antibacterial hydrogels with good biocompatibility to reduce the use of antibiotics. In this study, poly(lipoic acid-co-sodium lipoate)-phytic acid (P(LA-SL)-PA) hydrogels are prepared by a simple mixture of the natural small molecules lipoic acid (LA) and phytic acid (PA) in a mild and green reaction environment. The crosslinking network is constructed through the connection of covalent disulfide bonds as well as the hydrogen bonds, which endow the injectable and self-healing properties. The P(LA-SL)-PA hydrogels exhibit an adjustable compression modulus and adhesion. The in vitro agar plates assay indicates that the antibacterial rate of hydrogels against Escherichia coli and Staphylococcus aureus is close to 95%. In the rat-infected wound model, the P(LA-SL)-PA hydrogels adhere closely to the tissue and promote epithelialization and collagen deposition with a significant effect on wound healing. These results prove that the P(LA-SL)-PA hydrogels could act as effective wound dressings for promoting the healing of infected wounds.

10.
Nat Prod Res ; : 1-7, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785383

ABSTRACT

Preliminary pharmacological studies revealed that the EtOAc fraction (BGEA) might be the main active fraction with anti-inflammatory and antinociceptive effects in Beaumontia grandiflora Wall. Further assays on BGEA at doses of 200, 400, and 800 mg/kg using four animal models showed that it could inhibit the xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced writhing and prolong the latency time in the hot-plate test. ELISA analysis revealed that the anti-inflammatory activity of BGEA might be associated with the decrease of TNF-α, IL-1ß, and IL-6 levels and the increase of the IL-10 level. The acute toxicity test showed that except for the n-BuOH fraction, the LD50 values of the extract and other three fractions were higher than 2000 mg/kg bw. Finally, 14 compounds were identified from BGEA by LC-MS. This research provides some basis for the folk use of B. grandiflora in the treatment of inflammation and pain-related diseases.

11.
ACS Biomater Sci Eng ; 10(6): 3935-3945, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38741453

ABSTRACT

Achieving underwater adhesion possesses a significant challenge, primarily due to the presence of interfacial water, which restricts the potential applications of adhesives. In this study, we present a straightforward and environmentally friendly one-pot approach for synthesizing a solvent-free supramolecular TPFe bioadhesive composed of thioctic acid, proanthocyanidins, and FeCl3. The bioadhesive exhibits excellent biocompatibility and photothermal antibacterial properties and demonstrates effective adhesion on various substrates in both wet and dry environments. Importantly, the adhesive strength of this bioadhesive on steel exceeds 1.2 MPa and that on porcine skin exceeds 100 kPa, which is greater than the adhesive strength of most reported bioadhesives. In addition, the bioadhesive exhibits the ability to effectively halt bleeding, close wounds promptly, and promote wound healing in the rat skin wound model. Therefore, the TPFe bioadhesive has potential as a medical bioadhesive for halting bleeding quickly and promoting wound healing in the biomedical field. This study provides a new idea for the development of bioadhesives with firm wet adhesion.


Subject(s)
Wound Healing , Animals , Wound Healing/drug effects , Rats , Swine , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats, Sprague-Dawley , Adhesives/chemistry , Adhesives/pharmacology , Skin/drug effects , Skin/injuries , Skin/pathology , Wound Closure Techniques
12.
Phys Chem Chem Phys ; 26(18): 13862-13874, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38659377

ABSTRACT

Studies in atomic-scale modeling of surface phase equilibria often focus on temperatures near zero Kelvin due to the challenges in calculating the free energy of surfaces at finite temperatures. The Bayesian-inference-based nested sampling (NS) algorithm allows for modeling phase equilibria at arbitrary temperatures by directly and efficiently calculating the partition function, whose relationship with free energy is well known. This work extends NS to calculate adsorbate phase diagrams, incorporating all relevant configurational contributions to the free energy. We apply NS to the adsorption of Lennard-Jones (LJ) gas particles on low-index and vicinal LJ solid surfaces and construct the canonical partition function from these recorded energies to calculate ensemble averages of thermodynamic properties, such as the constant-volume heat capacity and order parameters that characterize the structure of adsorbate phases. Key results include determining the nature of phase transitions of adsorbed LJ particles on flat and stepped LJ surfaces, which typically feature an enthalpy-driven condensation at higher temperatures and an entropy-driven reordering process at lower temperatures, and the effect of surface geometry on the presence of triple points in the phase diagrams. Overall, we demonstrate the ability and potential of NS for surface modeling.

13.
J Am Chem Soc ; 146(12): 8706-8715, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38487838

ABSTRACT

Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.

15.
Angew Chem Int Ed Engl ; 62(52): e202315076, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37960950

ABSTRACT

Polymer electrolytes provide a visible pathway for the construction of high-safety quasi-solid-state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na-ion conduction via the cooperation of polymer-salt, ionic liquid, and electron-rich additive. Especially, PVDF-HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+ -FSI- ) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron-rich Nerolin with π-cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F-rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10-3  S cm-1 ) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance.

16.
Am J Sports Med ; 51(14): 3714-3723, 2023 12.
Article in English | MEDLINE | ID: mdl-37897349

ABSTRACT

BACKGROUND: Adolescents who experience a patellar dislocation have an elevated risk of patellofemoral posttraumatic osteoarthritis. Magnetic resonance imaging (MRI)-based T1ρ relaxation times were measured for adolescents to evaluate patellofemoral cartilage after patellar dislocation. Long T1ρ relaxation times are an indicator of cartilage degradation. HYPOTHESIS: The primary hypothesis is that patellofemoral cartilage T1ρ relaxation times will be elevated in the acute phase after patellar dislocation. The secondary hypothesis is that T1ρ relaxation times will be higher for knees with multiple rather than single dislocations due to repeated traumatic injury. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: In total, 23 adolescents being treated for a recent patellar dislocation, 13 for a first-time dislocation (47 ± 38 days since most recent dislocation) and 10 for multiple dislocations (55 ± 24 days since most recent dislocation), and 10 healthy controls participated in MRI-based T1ρ relaxation time mapping. For multiple regions of the patellofemoral joint, mean T1ρ values were compared between the 3 groups with multiple group comparisons and post hoc tests. T1ρ relaxation times were also correlated against measures of patellofemoral anatomy and alignment for single and multiple dislocations. Statistical significance was set at P < .05. RESULTS: T1ρ relaxation times were significantly longer for injured knees (single and multiple dislocations) than controls at the medial and central patella and central trochlear groove. For the regions on the patella, significant differences between injured and control knees exceeded 15%. No significant differences were identified between single and multiple dislocations. For the initial dislocation group, T1ρ relaxation times within multiple regions of the patellofemoral joint were significantly correlated with lateral patellar alignment or patellar height. CONCLUSION: Elevated patellofemoral cartilage T1ρ relaxation times are consistent with a high risk of long-term patellofemoral osteoarthritis for adolescents who experience patellar dislocations. T1ρ relaxation times were elevated for multiple regions of patellofemoral cartilage. T1ρ relaxation times were expected to increase with additional dislocation episodes, but relaxation times after single and multiple dislocations were similar. After a first dislocation, parameters related to patellar maltracking were correlated with cartilage degradation.


Subject(s)
Bone Diseases , Joint Dislocations , Osteoarthritis, Knee , Patellar Dislocation , Patellofemoral Joint , Humans , Adolescent , Patellar Dislocation/diagnostic imaging , Cross-Sectional Studies , Cartilage , Patellofemoral Joint/diagnostic imaging , Patella , Magnetic Resonance Imaging/methods
17.
ChemSusChem ; 16(24): e202300708, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37624682

ABSTRACT

Interphases, especially the electrochemically formed solid electrolyte interphase (SEI), are significantly important for cycling stability, reaction kinetics and safety of rechargeable batteries. The structure and composition of the electric double layer (EDL) greatly affect the formation of the SEI and the performance of electrodes. However, as far as we know, there is no review discussing the theme specifically. Herein, the recent substantial progress for EDL and its impact on the formation of SEI in rechargeable batteries are reviewed and discussed. Firstly, the specific adsorption of electrolyte components on electrodes' surface and the ionic solvation structure are introduced. Furthermore, various methods for controlling EDL in different electrode systems are described. Finally, the potential future advancements of the SEI through the manipulation of EDL are discussed, aiming to enhance the electrochemical performance of rechargeable batteries.

18.
Viruses ; 15(7)2023 07 08.
Article in English | MEDLINE | ID: mdl-37515209

ABSTRACT

The dual strategy of inhibiting the viral life cycle and reducing the host inflammatory response should be considered in the development of therapeutic drugs for influenza A virus (IAV). In this study, an extract of Scutellaria baicalinase (SBE) containing seven flavonoids was identified to exert both antiviral and anti-inflammatory effects in macrophages infected with IAV. We performed transcriptome analysis using high-throughput RNA sequencing and identified 315 genes whose transcription levels were increased after IAV infection but were able to be decreased after SBE intervention. Combined with Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, these genes were mainly involved in TLR3/7/8, RIG-I/MDA5, NLRP3 and cGAS pattern recognition receptor (PRR)-mediated signaling pathways. SBE inhibited the transcription of essential genes in the above pathways and nuclear translocation of NF-κB p65 as confirmed by RT-qPCR and immunofluorescence, respectively, indicating that SBE reversed PR8-induced over-activation of the PRR signaling pathway and inflammation in macrophages. This study provides an experimental basis for applying Scutellaria baicalensis and its main effects in the clinical treatment of viral pneumonia. It also provides novel targets for screening and developing novel drugs to prevent and treat IAV infectious diseases.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Scutellaria baicalensis , Signal Transduction , Macrophages , Receptors, Pattern Recognition
19.
Acta Pharm Sin B ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37360012

ABSTRACT

Via an insufficient coat protein complex I (COPI) retrieval signal, the majority of SARS-CoV-2 spike (S) is resident in host early secretory organelles and a tiny amount is leaked out in cell surface. Only surface-exposed S can be recognized by B cell receptor (BCR) or anti-S therapeutic monoclonal antibodies (mAbs) that is the trigger step for B cell activation after S mRNA vaccination or infected cell clearance by S mAbs. Now, a drug strategy to promote S host surface exposure is absent. Here, we first combined structural and biochemical analysis to characterize S COPI sorting signals. A potent S COPI sorting inhibitor was then invented, evidently capable of promoting S surface exposure and facilitating infected cell clearance by S antibody-dependent cellular cytotoxicity (ADCC). Importantly, with the inhibitor as a probe, we revealed Omicron BA.1 S is less cell surface exposed than prototypes because of a constellation of S folding mutations, possibly corresponding to its ER chaperone association. Our findings not only suggest COPI is a druggable target against COVID-19, but also highlight SARS-CoV-2 evolution mechanism driven by S folding and trafficking mutations.

20.
Chemosphere ; 328: 138553, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37004820

ABSTRACT

The coaxial electrospinning method for preparation of g-C3N4/polyacrylonitrile (PAN)/polyaniline (PANI)@LaFeO3 cable fiber membrane (PC@PL) was designed for adsorption-filtration-photodegradation of pollutants. A series of characterization results show that LaFeO3 and g-C3N4 nanoparticles (NPs) are respectively loaded in the inner and outer layers of PAN/PANI composite fibers to construct the site-specific Z-type heterojunction system with spatially separated morphologies. The PANI in cable not only possesses abundant exposed amino/imino functional groups for adsorption of contaminant molecules but also due to the excellent electrical conductivity works as a redox medium for collecting and consuming the electrons and holes from LaFeO3 and g-C3N4, which can efficiently promote photo-generated charge carriers separation and improve the catalytic performance. Further investigations demonstrate that as a photo-Fenton catalyst LaFeO3 in PC@PL catalyzes/activates the H2O2 generated in situ by LaFeO3/g-C3N4, further enhancing the decontamination efficiency of the PC@PL. The porous, hydrophilic, antifouling, flexible and reusable properties of the PC@PL membrane significantly enhance the mass transfer efficiency of reactants by filtration effect and increase the amount of dissolved oxygen, thus producing massive •OH for degradation of pollutants, which maintains the water flux (1184 L m-2. h-1 (LMH)) and the rejection rate (98.5%). Profiting from its unique synergistic effect of adsorption, photo-Fenton and filtration, PC@PL exhibits wonderful self-cleaning performance and distinguished removal rate for methylene blue (97.0%), methyl violet (94.3%), ciprofloxacin (87.6%) and acetamiprid (88.9%) within 75 min, disinfection (100% Escherichia coli (E. coli) and 80% Staphylococcus aureus (S.aureus) inactivation)) and excellent cycle stability.


Subject(s)
Nanofibers , Escherichia coli , Hydrogen Peroxide
SELECTION OF CITATIONS
SEARCH DETAIL