Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.104
Filter
1.
Adv Mater ; : e2403785, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007279

ABSTRACT

In this era of artificial intelligence and Internet of Things, emerging new computing paradigms such as in-sensor and in-memory computing call for both structurally simple and multifunctional memory devices. Although emerging two-dimensional (2D) memory devices provide promising solutions, the most reported devices either suffer from single functionalities or structural complexity. Here, this work reports a reconfigurable memory device (RMD) based on MoS2/CuInP2S6 heterostructure, which integrates the defect engineering-enabled interlayer defects and the ferroelectric polarization in CuInP2S6, to realize a simplified structure device for all-in-one sensing, memory and computing. The plasma treatment-induced defect engineering of the CuInP2S6 nanosheet effectively increases the interlayer defect density, which significantly enhances the charge-trapping ability in synergy with ferroelectric properties. The reported device not only can serve as a non-volatile electronic memory device, but also can be reconfigured into optoelectronic memory mode or synaptic mode after controlling the ferroelectric polarization states in CuInP2S6. When operated in optoelectronic memory mode, the all-in-one RMD could diagnose ophthalmic disease by segmenting vasculature within biological retinas. On the other hand, operating as an optoelectronic synapse, this work showcases in-sensor reservoir computing for gesture recognition with high energy efficiency.

2.
Article in English | MEDLINE | ID: mdl-38949621

ABSTRACT

Novel and covert fluorescence is quite desirable for fluorescent anticounterfeiting application. Here, Cs2InCl5·H2O/Sb and Cs2NaInCl6/Sb with high photoluminescence quantum yields (PLQYs) of 99.61 and 99.9%, respectively, were achieved. Considering the excellent optical performances together with the high similarity of the two crystal structures, we tried to realize the crystal structure transition from Cs2InCl5·H2O/Sb to Cs2NaInCl6/Sb by an ion-exchange method. It was well done by just adding the NaCl precursor with different concentrations in the Cs2InCl5·H2O/Sb product. Interestingly, a gradual color change from yellow to orange, warm white, white, cool white, and blue was achieved in the process of crystal structure transition. The energy-transfer dynamic models of Cs2InCl5·H2O/Sb, the white product, and Cs2NaInCl6/Sb were identified. The chemical reaction and UV fluorescence properties made it possible for application in chemical and fluorescent double-modal anticounterfeiting and highly decreased the possibility of being cracked and copied. Especially, when salt for daily cooking was used to replace NaCl, a similar phenomenon happened as that of the 99.9% NaCl precursor, which made it easy to be applicated. The combination of chemical and optical verifications provides two levels of security and unbreakable encryption. The results demonstrate that the transition from Cs2InCl5·H2O/Sb to Cs2NaInCl6/Sb is highly promising in fluorescent anticounterfeiting application.

3.
J Med Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962837

ABSTRACT

Targeting c-Met is a clinical trend for the precise treatment of HCC, but the potential issue of acquired drug resistance cannot be ignored. Targeted protein degradation technology has demonstrated promising prospects in disease treatment and overcoming drug resistance due to its special mechanism of action. In this study, we designed and synthesized two series of novel c-Met degraders and conducted a systematic biological evaluation of the optimal compound H11. H11 exhibited good c-Met degradation activity and anti-HCC activity. Importantly, H11 also demonstrated more potent inhibitory activity against Ba/F3-TPR-MET-D1228N and Ba/F3-TPR-MET-Y1230H cell lines than did tepotinib. In summary, H11 displayed potent anti-HCC activity as a degrader and may overcome resistance to type Ib inhibitors, making it a new therapeutic strategy for HCC with MET alterations.

4.
Acta Trop ; : 107322, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004112

ABSTRACT

Arboviruses have always been a significant public health concern. Metagenomic surveillance has expanded the number of novel, often unclassified arboviruses, especially mosquito-borne and mosquito-specific viruses. This report presents the first description of a novel single-stranded RNA virus, Wanghe virus, identified from mosquitoes that were collected in Shandong Province in 2022. In this study, a total of 4,795 mosquitoes were collected and then divided into 105 pools according to location and species. QRT-PCR and nested PCR were performed to confirm the presence of Wanghe virus, and its genomic features and phylogenetic relationships were further analyzed. Our results revealed that Wanghe virus was detected in 9 out of the 105 mosquito pools, resulting in a minimum infection rate (MIR) of 0.19% (9/4,795). One complete genome sequence and three viral partial sequences were obtained from the Wanghe virus-positive pools. Pairwise distance analysis indicated that these amplified sequences shared high nucleotide identity. Phylogenetic analysis demonstrated that Wanghe virus is most closely related to Guiyang Solinvi-like virus 3, which belongs to Solinviviridae. Further analyses indicated that Wanghe virus is a new, unclassified member of Solinviviridae.

5.
Adv Sci (Weinh) ; : e2403158, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953329

ABSTRACT

In situ cancer vaccination is an attractive strategy that stimulates protective antitumor immunity. Cytotoxic T lymphocytes (CTLs) are major mediators of the adaptive immune defenses, with critical roles in antitumor immune response and establishing immune memory, and are consequently extremely important for in situ vaccines to generate systemic and lasting antitumor efficacy. However, the dense extracellular matrix and hypoxia in solid tumors severely impede the infiltration and function of CTLs, ultimately compromising the efficacy of in situ cancer vaccines. To address this issue, a robust in situ cancer vaccine, Au@MnO2 nanoparticles (AMOPs), based on a gold nanoparticle core coated with a manganese dioxide shell is developed. The AMOPs modulated the unfavorable tumor microenvironment (TME) to restore CTLs infiltration and function and efficiently induced immunogenic cell death. The Mn2+-mediated stimulator of the interferon genes pathway can be activated to further augment the therapeutic efficacy of the AMOPs. Thus, the AMOPs vaccine successfully elicited long-lasting antitumor immunity to considerably inhibit primary, recurrent, and metastatic tumors. This study not only highlights the importance of revitalizing CTLs efficacy against solid tumors but also makes progress toward overcoming TME barriers for sustained antitumor immunity.

6.
Front Microbiol ; 15: 1419436, 2024.
Article in English | MEDLINE | ID: mdl-38966396

ABSTRACT

Introduction: Anthracnose is a significant fungal disease that affects tree growth and development, with Colletotrichum spp. exhibiting host non-specificity and targeting various organs, making disease control challenging. Methods: This study aimed to identify the pathogenic species causing anthracnose in Ilex macrocarpa in Nanchong, Sichuan Province, and screen effective fungicides, particularly biological ones. The pathogen was identified as Colletotrichum fioriniae through morphological observation, pathogenicity assays, and molecular biological methods. Three biological and five chemical fungicides were evaluated for their effects on the mycelial growth and spore germination rate of the pathogen. Results: The results indicated that prochloraz was the most effective chemical fungicide, while the cell-free supernatant (CFS) of Bacillus velezensis had the most significant inhibitory effect among the biological fungicides. Transcriptome analysis revealed that the CFS of B. velezensis significantly reduced the expression of genes associated with ribosomes, genetic information processing, membrane lipid metabolism, and sphingolipid biosynthesis in C. fioriniae. Additionally, the glutathione pathway's expression of various genes, including key genes such as GST, GFA, Grx, TRR, and POD, was induced. Furthermore, the expression of 17 MFS transporters and 9 ABC transporters was increased. Autophagy-related ATGs were also affected by the B. velezensis CFS. Discussion: These findings suggest that the B. velezensis CFS may inhibit C. fioriniae through interference with ribosomes, genetic information processing, cell membrane metabolism, and energy metabolism. These results provide potential target genes for the B. velezensis CFS and insights into the antifungal mechanism by which B. velezensis inhibits C. fioriniae.

7.
J Ethnopharmacol ; 334: 118533, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971347

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum Indicum L., is a popular traditional Chinese medicine (TCM) for treatment of inflammatory diseases in China. FCI is also a functional food, and is widely used as herbal tea for clearing heat and detoxicating. AIM OF THE STUDY: To explore quality control markers of FCI based on the optimal harvest period. MATERIALS AND METHODS: First, UPLC-Q-TOF/MS based untargeted metabolomics was applied to explore the chemical profiles of FCIs collected at bud stages (BS), initial stages (IS), full bloom stages (FS) and eventual stages (ES) from eight cultivated regions in China. Subsequently, lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model and carrageenan-induced rat paw edema model were used to confirm the anti-inflammatory effect of FCIs collected at IS/FS. Then, UPLC-PDA targeted metabolomics was used to quantitatively analyze 9 constituents with anti-inflammatory activity (7 flavonoids and 2 phenolic acids) changed significantly (VIP > 4) during flowering stages. Finally, ROC curves combined with PCA analysis based on the variation of 9 active constituents in FCIs from different flowering stages were applied to screen the quality markers of FCI. RESULTS: FCIs at IS/FS had almost same chemical characteristics, but quite different from those at BS and ES. A total of 32 constituents in FCIs including flavonoids and phenolic acids were changed during flowering development. Most of the varied constituents had the highest or higher contents at IS/FS compared with those at ES, indicating that the optimal harvest period of FCI should be at IS/FS. FCI extract could effectively suppress nitric oxide (NO) production in LPS-induced RAW264.7 cells and regulate the abnormal levels of cytokines and PGE2 in carrageenan-induced paw edema model rat. The results of quantitatively analysis revealed that the variation trends of phenolic acids and flavonoids in FCIs were different during flowering development, but most of them had higher contents at IS/FS than those at ES in all FCIs collected from eight cultivated regions, except one sample from Anhui. Finally, linarin, luteolin, apigenin and 3,5-dicaffeoylquinic acid were selected as the Q-markers based on the contribution of their AUC values in ROC and clustering of PCA analysis. CONCLUSIONS: Our study demonstrates the optimal harvest period of FCI and specifies the multi-constituents Q-markers of FCI based on the influence of growth progression on the active constituents using untargeted/targeted metabolomics. The findings not only greatly increase the utilization rate of FCI resources and improve quality control of FCI products, but also offer new strategy to identify the Q-markers of FCI.

8.
Chem Sci ; 15(23): 8946-8958, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873054

ABSTRACT

The amyloid states of proteins are implicated in several neurodegenerative diseases and bioadhesion processes. However, the classical amyloid fibrillization mechanism fails to adequately explain the formation of polymorphic aggregates and their adhesion to various surfaces. Herein, we report a non-fibril amyloid aggregation pathway, with disulfide-bond-reduced lysozyme (R-Lyz) as a model protein under quasi-physiological conditions. Very different from classical fibrillization, this pathway begins with the air-water interface (AWI) accelerated oligomerization of unfolded full-length protein, resulting in unique plate-like oligomers with self-adaptive ability, which can adjust their conformations to match various interfaces such as the asymmetric AWI and amyloid-protein film surface. The pathway enables a stepwise packing of the plate-like oligomers into a 2D Janus nanofilm, exhibiting a divergent distribution of hydrophilic/hydrophobic residues on opposite sides of the nanofilm. The resulting Janus nanofilm possesses a top-level Young's modulus (8.3 ± 0.6 GPa) among amyloid-based materials and exhibits adhesive strength two times higher (145 ± 81 kPa) than that of barnacle cement. Furthermore, we found that such an interface-directed pathway exists in several amyloidogenic proteins with a similar self-adaptive 2D-aggregation process, including bovine serum albumin, insulin, fibrinogen, hemoglobin, lactoferrin, and ovalbumin. Thus, our findings on the non-fibril self-adaptive mechanism for amyloid aggregation may shed light on polymorphic amyloid assembly and their adhesions through an alternative pathway.

9.
Chem Sci ; 15(24): 9112-9119, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38903225

ABSTRACT

The weak spin-orbit coupling (SOC) in metal-free organic molecules poses a challenge in achieving phosphorescence emission. To attain pure phosphorescence in RTP organic emitters, a promising molecular design concept has been proposed. This involves incorporating n → π* transitions and leveraging the heavy atomic effect within the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism of bipolar molecules. Following this design concept, two bipolar metal-free organic molecules (PhSeB and PhSeDB) with donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) configurations have been synthesized. When the molecular configuration changes from D-A to A-D-A, PhSeDB exhibits stronger electron coupling and n → π* transitions, which can further enhance the spin-orbit coupling (SOC) together with the heave atom effect from the selenium atom. By the advanced synergism among enhanced n → π* transitions, heavy atom effect and magnified electron coupling to efficiently promote phosphorescence emission, PhSeDB can achieve pure RTP emission in both the solution and doped solid film. Thanks to the higher spin-orbit coupling matrix elements (SOCMEs) for T1 ↔ S0, PhSeDB attains the highest phosphorescence quantum yield (ca. 0.78) among all the RTP organic emitters reported. Consequently, the purely organic phosphorescent light-emitting diodes (POPLEDs) based on PhSeDB achieve the highest external quantum efficiencies of 18.2% and luminance of 3000 cd m-2. These encouraging results underscore the significant potential of this innovative molecular design concept for highly efficient POPLEDs.

10.
Chem Commun (Camb) ; 60(51): 6548-6551, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38842110

ABSTRACT

The synthesis of deuterated gem-difluoroalkenes via selective deuterodefluorination of ß-CF3-cinnamates using a nickel catalyst has been reported for the first time. Commercially available deuterated formic acid is a cheap and convenient deuterium source. The nickel-catalyst showed high selectivity for monodefluorination and avoided competitive reactions such as multiple defluorination or hydrogenation.

11.
Adv Sci (Weinh) ; : e2305593, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873820

ABSTRACT

Centromere protein A (CENP-A), a histone H3 variant specific to centromeres, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of ß-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.

12.
Bone Joint Res ; 13(6): 294-305, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884556

ABSTRACT

Aims: In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. Methods: We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis. Results: The results showed that the LLDS has high inter-rater reliability. As illustrated by the heat map, the distribution of Japanese Investigation Committee (JIC) classification type C necrotic lesions exhibited clustering characteristics, with the lesions being concentrated in the northern and eastern regions, forming a hot zone (90% probability) centred on the N4-N6E2, N3-N6E units of outer ring blocks. Statistical results showed that the distribution difference between type C2 and type C1 was most significant in the E1 and E2 units and, combined with the heat map, indicated that the spatial distribution differences at N3-N6E1 and N1-N3E2 units are crucial in understanding type C1 and C2 necrotic lesions. Conclusion: The LLDS can be used to accurately measure the spatial location of necrotic lesions and display their distribution characteristics.

13.
ACS Nano ; 18(24): 15991-16001, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829730

ABSTRACT

Phase heterogeneity of bromine-iodine (Br-I) mixed wide-bandgap (WBG) perovskites has detrimental effects on solar cell performance and stability. Here, we report a heterointerface anchoring strategy to homogenize the Br-I distribution and mitigate the segregation of Br-rich WBG-perovskite phases. We find that methoxy-substituted phenyl ethylammonium (x-MeOPEA+) ligands not only contribute to the crystal growth with vertical orientation but also promote halide homogenization and defect passivation near the buried perovskite/hole transport layer (HTL) interface as well as reduce trap-mediated recombination. Based on improvements in WBG-perovskite homogeneity and heterointerface contacts, NiOx-based opaque WBG-perovskite solar cells (WBG-PSCs) achieved impressive open-circuit voltage (Voc) and fill factor (FF) values of 1.22 V and 83%, respectively. Moreover, semitransparent WBG-PSCs exhibit a PCE of 18.5% (15.4% for the IZO front side) and a high FF of 80.7% (79.4% for the IZO front side) for a designated illumination area (da) of 0.12 cm2. Such a strategy further enables 24.3%-efficient two-terminal perovskite/silicon (double-polished) tandem solar cells (da of 1.159 cm2) with a high Voc of over 1.90 V. The tandem devices also show high operational stability over 1000 h during T90 lifetime measurements.

14.
ACS Nano ; 18(26): 17293-17303, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885180

ABSTRACT

Two-dimensional (2D) tellurium (Te) is emerging as a promising p-type candidate for constructing complementary metal-oxide-semiconductor (CMOS) architectures. However, its small bandgap leads to a high leakage current and a low on/off current ratio. Although alloying Te with selenium (Se) can tune its bandgap, thermally evaporated SexTe1-x thin films often suffer from grain boundaries and high-density defects. Herein, we introduce a precursor-confined chemical vapor deposition (CVD) method for synthesizing single-crystalline SexTe1-x alloy nanosheets. These nanosheets, with tunable compositions, are ideal for high-performance field-effect transistors (FETs) and 2D inverters. The preformation of Se-Te frameworks in our developed CVD method plays a critical role in the growth of SexTe1-x nanosheets with high crystallinity. Optimizing the Se composition resulted in a Se0.30Te0.70 nanosheet-based p-type FET with a large on/off current ratio of 4 × 105 and a room-temperature hole mobility of 120 cm2·V-1·s-1, being eight times higher than thermally evaporated SexTe1-x with similar composition and thickness. Moreover, we successfully fabricated an inverter based on p-type Se0.30Te0.70 and n-type MoS2 nanosheets, demonstrating a typical voltage transfer curve with a gain of 30 at an operation voltage of Vdd = 3 V.

15.
Anal Chem ; 96(26): 10851-10859, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38912707

ABSTRACT

Mitochondrial Membrane Chromatography (MMC) is a bioaffinity chromatography technique developed to study the interaction between target proteins embedded in the mitochondrial membrane and their ligand compounds. However, the MMC stationary phases (MMSP) prepared by chemical immobilization are prone to nonspecific binding in candidate agent screening inevitably. To address these challenges, Twin Strep-Tag/Strep Tactin was employed to establish a specific affinity system in the present study. We prepared a carnitine palmitoyltransferase 1A (CPT1A) MMSP by specifically linking Strep-tactin-modified silica gel with the Twin Strep-Tag on the CPT1A-oriented mitochondrial membrane. This Twin Strep-Tag/Strep Tactin modified CPT1A/MMC method exhibited remarkably better retention behavior, longer stationary phase lifespan, and higher screening specificity compared with previous MMC systems with glutaraldehyde immobilization. We adopted the CPT1A-specific MMC system in screening CPT1A ligands from traditional Chinese medicines, and successfully identified novel candidate ligands: ononin, isoliquiritigenin, and aloe-emodin, from Glycyrrhiza uralensis Fisch and Senna tora (L.) Roxb extracts. Biological assessments illustrated that the compounds screened promote CPT1A enzyme activity without affecting CPT1A protein expression, as well as effectively reduce the lipid droplets and triglyceride levels in the high fat induction HepG2 cells. The results suggest that we have developed an MMC system, which is promising for studying the bioaffinity of mitochondrial membrane proteins to candidate compounds. This system provides a platform for a key step in mitochondrial medicine discovery, especially for bioactive molecule screening from complex herbal extracts.


Subject(s)
Carnitine O-Palmitoyltransferase , Lipid Metabolism , Mitochondrial Membranes , Humans , Carnitine O-Palmitoyltransferase/metabolism , Lipid Metabolism/drug effects , Mitochondrial Membranes/metabolism , Chromatography, Affinity , Ligands
16.
Diagnostics (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928672

ABSTRACT

Currently, brain tumors are extremely harmful and prevalent. Deep learning technologies, including CNNs, UNet, and Transformer, have been applied in brain tumor segmentation for many years and have achieved some success. However, traditional CNNs and UNet capture insufficient global information, and Transformer cannot provide sufficient local information. Fusing the global information from Transformer with the local information of convolutions is an important step toward improving brain tumor segmentation. We propose the Group Normalization Shuffle and Enhanced Channel Self-Attention Network (GETNet), a network combining the pure Transformer structure with convolution operations based on VT-UNet, which considers both global and local information. The network includes the proposed group normalization shuffle block (GNS) and enhanced channel self-attention block (ECSA). The GNS is used after the VT Encoder Block and before the downsampling block to improve information extraction. An ECSA module is added to the bottleneck layer to utilize the characteristics of the detailed features in the bottom layer effectively. We also conducted experiments on the BraTS2021 dataset to demonstrate the performance of our network. The Dice coefficient (Dice) score results show that the values for the regions of the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) were 91.77, 86.03, and 83.64, respectively. The results show that the proposed model achieves state-of-the-art performance compared with more than eleven benchmarks.

17.
Chemosphere ; 362: 142510, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908445

ABSTRACT

Ligusticum Chuanxiong is an essential medicinal and edible plant, but it is highly susceptible to the enrichment of soil Cadmium (Cd), which seriously affects its medical safety. However, the control of Cd uptake by Ligusticum Chuanxiong is little reported. In this study, we reported that a green Mercapto-functionalized palygorskite (MPAL) effectively promoted Ligusticum Chuanxiong growth, and restrained the Cd uptake by Ligusticum Chuanxiong both in the mildly contaminated soil (M-Soil) and severely contaminated soil (S-Soil). The experimental results demonstrated that the application of MPAL significantly increased the biomass and antioxidant enzyme activity of Ligusticum Chuanxiong. In the M-Soil, the Cd content in the roots, stems, and leaves of Ligusticum Chuanxiong decreased markedly by 82.46-86.66%, 64.17-71.73%, and 64.94-76.66%, respectively, after the MPAL treatment. In the S-Soil, MPAL application decreased the Cd content in roots, stems, and leaves by 89.43-98.92%, 24.19-86.22%, and 67.14-77.90%, respectively. Based on Diethylenetriamine Pentaacetic Acid (DTPA) extraction, the immobilization efficiency of MPAL for Cd in soils ranged from 22.01% to 77.04%. Additionally, the HOAc extractable Cd was transformed into reducible and oxidizable fractions. Furthermore, MPAL enhanced the activities of soil alkaline phosphatase, and urease, but decreased sucrase activity. Environmental toxicological analysis indicated that MPAL reduced the potential ecological risk of Cd in the soil. These findings revealed that MPAL can effectively reduce Cd accumulation in Ligusticum Chuanxiong and promote plant growth, suggesting its potential as a viable amendment for remediating Cd-contaminated soils.

18.
Small ; : e2403879, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881274

ABSTRACT

Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric-electromagnetic hybrid nanogenerator (TE-HNG) consisting of TENGs and electromagnetic generators (EMGs) is proposed to harvest water flow energy. A magnetic coupling transmission component is applied to replace traditional bearing structures, which can realize the fully enclosed packaging of the TENG devices and achieve long-lasting energy harvesting from water flow. Under the intense water impact, magnetic coupling reduces the possibility of internal gear damage due to excessive torque, indicating superior stability and robustness compared to conventional TENG. At the waterwheel rotates speed of 75 rpm, the TE-HNG can generate an output peak power of 114.83 mW, corresponding to a peak power density of 37.105 W m-3. After 5 h of continuous operation, the electrical output attenuation of TENG is less than 3%, demonstrating excellent device durability. Moreover, a self-powered temperature sensing system and a self-powered cathodic protection system based on the TE-HNG are developed and illustrated. This work provides a prospective strategy for improving the output stability of TENGs, which benefits the practical applications of the TENGs in large-scale blue energy harvesting.

19.
Biochem Pharmacol ; 226: 116345, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852643

ABSTRACT

Ferroptosis is a regulated cell death marked by iron-dependent lipid peroxidation. Tumor cells that survive by evading chemotherapy-induced apoptosis are vulnerable to ferroptosis. Therefore, it is particularly urgent to explore active ingredients that can selectively induce ferroptosis in cancer cells. Here, we revealed that sanggenol L, the active agent of Morus Bark, predisposed non-small cell lung cancer (NSCLC) cells to ferroptosis, evidenced by reactive oxygen species (ROS) accumulation, glutathione depletion, mitochondrial shrinkage, and lipid peroxidation. Furthermore, the ferroptosis-related miRNA array showed that sanggenol L treatment upregulated the level of miR-26a-1-3p, which directly targeted the E3 ubiquitin ligase MDM2. In addition, silencing MDM2 by miR-26a-1-3p resulted in a notable increase in p53 protein levels and decrease of its downstream target SLC7A11, ultimately triggered ferroptosis. The subcutaneous xenograft model and patient-derived tumor xenograft (PDX) model of NSCLC further confirmed the anti-tumor efficacy and safety of sanggenol L in vivo. Collectively, our data suggest that miR-26a-1-3p/MDM2/p53/SLC7A11 signaling axis plays a key role in sanggenol L-induced ferroptosis, which implies that sanggenol L can serves as an anticancer therapeutic arsenal for NSCLC.

20.
Med Image Anal ; 97: 103213, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38850625

ABSTRACT

Multi-modal data can provide complementary information of Alzheimer's disease (AD) and its development from different perspectives. Such information is closely related to the diagnosis, prevention, and treatment of AD, and hence it is necessary and critical to study AD through multi-modal data. Existing learning methods, however, usually ignore the influence of feature heterogeneity and directly fuse features in the last stages. Furthermore, most of these methods only focus on local fusion features or global fusion features, neglecting the complementariness of features at different levels and thus not sufficiently leveraging information embedded in multi-modal data. To overcome these shortcomings, we propose a novel framework for AD diagnosis that fuses gene, imaging, protein, and clinical data. Our framework learns feature representations under the same feature space for different modalities through a feature induction learning (FIL) module, thereby alleviating the impact of feature heterogeneity. Furthermore, in our framework, local and global salient multi-modal feature interaction information at different levels is extracted through a novel dual multilevel graph neural network (DMGNN). We extensively validate the proposed method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and experimental results demonstrate our method consistently outperforms other state-of-the-art multi-modal fusion methods. The code is publicly available on the GitHub website. (https://github.com/xiankantingqianxue/MIA-code.git).

SELECTION OF CITATIONS
SEARCH DETAIL
...