Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 14(12): 3120-3135, 2020 12.
Article in English | MEDLINE | ID: mdl-32814863

ABSTRACT

Fungal pathogens are seriously threatening food security and natural ecosystems; efficient and environmentally friendly control methods are essential to help safeguard such resources for increasing human populations on a global scale. Here, we find that Sclerotinia sclerotiorum, a widespread pathogen of dicotyledons, can grow endophytically in wheat, rice, barley, maize, and oat, providing protection against Fusarium head blight, stripe rust, and rice blast. Protection is also provided by disabled S. sclerotiorum strains harboring a hypovirulence virus. The disabled strain DT-8 promoted wheat yields by 4-18% in the field and consistently reduced Fusarium disease by 40-60% across multiple field trials. We term the host-dependent trophism of S. sclerotiorum, destructively pathogenic or mutualistically endophytic, as schizotrophism. As a biotroph, S. sclerotiorum modified the expression of wheat genes involved in disease resistance and photosynthesis and increased the level of IAA. Our study shows that a broad-spectrum pathogen of one group of plants may be employed as a biocontrol agent in a different group of plants where they can be utilized as beneficial microorganisms while avoiding the risk of in-field release of pathogens. Our study also raises provocative questions about the potential role of schizotrophic endophytes in natural ecosystems.


Subject(s)
Edible Grain , Mycoses , Ascomycota , Ecosystem , Humans , Life Style , Plant Diseases
2.
Front Physiol ; 10: 344, 2019.
Article in English | MEDLINE | ID: mdl-31019467

ABSTRACT

Diapause is a form of dormancy used by many insects to survive adverse environmental conditions, which can occur in specific developmental stages in different species. Drosophila suzukii is a serious economic pest and we determined the conditions for adult reproductive diapause by the females in our previous studies. In this study, we combined RNA-Seq transcriptomic and quantitative proteomic analyses to identify adult reproductive diapause-related genes and proteins. According to the transcriptomic analysis, among 242 annotated differentially expressed genes in non-diapause and diapause females, 129 and 113 genes were up- and down-regulated, respectively. In addition, among the 2,375 proteins quantified, 39 and 23 proteins were up- and down-regulated, respectively. The gene expression patterns in diapause- and non-diapause were confirmed by qRT-PCR or western blot analysis. The overall analysis of robustly regulated genes at the protein and mRNA levels found four genes that overlapped in the up-regulated group and six genes in the down-regulated group, and thus these proteins/genes may regulate adult reproductive diapause. These differentially expressed proteins/genes act in the citrate cycle, insulin signaling pathway, PI3K-Akt signaling pathway, and amino acid biosynthesis pathways. These results provide the basis for further studies of the molecular regulation of reproductive diapause in this species.

3.
J Environ Manage ; 218: 280-290, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29684780

ABSTRACT

Landscape structure and vegetation coverage are important habitat conditions for Oriental Migratory Locust infestation in East Asia. Characterizing the landscape's dynamics of locust habitat is meaningful for reducing the occupation of locusts and limiting potential risks. To better understand causes and consequences of landscape pattern and locust habitat, it is not enough to simply detect locust habitat of each year. Rather, landcover transitions causing the change of locust habitat area must also be explored. This paper proposes an integrated implement to quantify the influence of landscape's dynamics on locust habitat changes based on three tenets: 1) temporal context can provide insight into the land cover transitions, 2) the detection of locust habitat area is operated on patches rather than pixels with full consideration of landscape's ecology, 3) the modeling must be flexible and unsupervised. These ideas have not been previously explored in demonstrating the possible role of changes in landscape characteristics to drive locust habitat transitions. The case study focuses on the Dagang district, a hot spot of locust infestation of China, from 2000 to 2015. Firstly, the seasonal characteristics of typical landcovers in NDVI, TVI, and LST were extracted from fused Landsat-MODIS surface reflectance imagery. Subsequently, a landscape membership-based random forest (LMRF) algorithm was proposed to quantify the landscape structure and hydrological regimen of locust habitat at the patch level. Finally, we investigated the correlations between the specific landcover transitions and habitat changes. Within the 16 years observations, our findings suggest that the sparse reeds and weeds in the vicinity of beach land, riverbanks, and wetlands are the dominant landscape structure associated with locust habitat change (R2 > 0.68), and the fluctuation in the water level is a key ecological factor to facilitate the locust habitat change (R2 > 0.61). These results are instrumental for developing precision pesticide use to reduce environmental degradation, and providing positive perspectives for ecological management and transformation of locust habitats.


Subject(s)
Ecology , Grasshoppers , Animals , China , Ecosystem , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL