Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Crit Rev Food Sci Nutr ; : 1-34, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712440

ABSTRACT

Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.

2.
Environ Res ; 252(Pt 3): 118967, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642643

ABSTRACT

Sulfadimidine (SM2) is an N-substituted derivative of p-aminobenzenesulfonyl structure. This study aimed to analyze the metabolism of SM2 in carp (Cyprinus carpio). The carps were fed with SM2 at a dose of 200 mg/(kg · bw) and then killed. The blood, muscle, liver, kidney, gill, other guts, and carp aquaculture water samples were collected. The UHPLC-Q-Exactive Plus Orbitrap-MS was adopted for determining the metabolites of SM2 in the aforementioned samples. Twelve metabolites, which were divided into metabolites in vivo and metabolites in vitro, were identified using Compound Discoverer software. The metabolic pathways in vivo of SM2 in carp included acetylation, hydroxylation, glucoside conjugation, glycine conjugation, carboxylation, glucuronide conjugation, reduction, and methylation. The metabolic pathways in vitro included oxidation and acetylation. This study clarified the metabolites and metabolic pathways of SM2 in carp and provided a reference for further pharmacodynamic evaluation and use in aquaculture.

3.
Food Chem ; 447: 138917, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38452540

ABSTRACT

The polymer ionic liquid (1-allyl-3-butylimidazolium bromide) enhanced silica aerogel was modified onto the surface of stainless-steel mesh to immobilize aptamer-1 for the specific recognition of AFB1. The porous channels of silica aerogel could prevent the interference of macromolecules in food samples. Enzyme kinetic analysis showed that the MoS2/Au was an effective peroxidase mimic with a relatively low Michaelis constant (Km) value of 0.17 mM and a high catalytic rate of 3.87 × 10-8 mol (L·s)-1, which exhibited obvious superiority compared with horseradish peroxidase. The established "sandwich-structure" biosensor was coupled with the smartphone "Color Picker" application was used to detect AFB1 with a wide linear range (1-100 ng mL-1) and low detection limit (0.25 ng mL-1). The anti-interference ability of the established biosensor was evaluated by adding different concentrations of standards in corn, peanut, and wheat and matrix effects were 90.84-106.11 %. The results showed that this method demonstrated high specificity, sensitivity, rapidity and low interference in food samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ionic Liquids , Silicon Dioxide , Aflatoxin B1/analysis , Colorimetry/methods , Smartphone , Kinetics , Biosensing Techniques/methods , Limit of Detection
4.
Front Microbiol ; 15: 1366400, 2024.
Article in English | MEDLINE | ID: mdl-38481792

ABSTRACT

Protocatechualdehyde (PA) is a phenolic acid present in many plants and has many biological activities. Herein, the antagonistic effects and the action mechanism of PA against methicillin-resistant Staphylococcus aureus (MRSA) were studied. The results showed that PA had both significant antibacterial and anti-biofilm activities against MRSA. Additionally, PA had synergy with ampicillin against MRSA. It was elucidated that PA was prominent in destroying cell membranes, increasing cell membrane permeability and intracellular ROS production, thus leading to bacterial cell damage. Transcriptome analysis showed that PA disrupts many physiological pathways, including increasing cell membrane permeability, inhibiting biofilm formation, decreasing resistance to antimicrobial agents, and impairing DNA replication. Finally, the antimicrobial preservation test showed that PA could inhibit the growth of MRSA and prevent the corruption of beef. In summary, PA is an effective natural antibacterial substance and has a good application potential in food preservation, even in tackling antibiotic resistance problems.

5.
Int J Biol Macromol ; 262(Pt 2): 130099, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342255

ABSTRACT

The study aimed to assay the allergenicity of shrimp tropomyosin (TM) following covalent conjugation with quercetin (QR) and chlorogenic acid (CA). The structure of the TM-polyphenol covalent conjugates was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), fluorescence, differential scanning calorimetry (DSC), and Fourier Transform infrared spectroscopy (FTIR). Potential allergenicity was evaluated using in vitro and in vivo methods. The results showed that QR and CA induced structural changes in TM through aggregation. RBL-2H3 cell results showed that TM-QR and TM-CA covalent conjugates reduced the release of ß-hexosaminidase and histamine, respectively. In the mice model, TM-QR and TM-CA covalent conjugates reduced the level of IgE, IgG, IgG1, histamine, and mMCP-1 in sera. Furthermore, the allergenicity was reduced by suppressing Th2-related cytokines (IL-4, IL-5, IL-13) and promoting Th1-related cytokines (IFN-γ). These research findings demonstrate that the covalent binding of TM with QR and CA, modifies the allergenic epitopes of shrimp TM, thereby reducing its potential allergenicity. This approach holds practical applications in the production of low-allergenicity food within the food industry.


Subject(s)
Allergens , Tropomyosin , Mice , Animals , Tropomyosin/chemistry , Allergens/chemistry , Chlorogenic Acid/chemistry , Quercetin , Histamine , Immunoglobulin E/metabolism , Cytokines
6.
Anal Methods ; 15(47): 6551-6560, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37997770

ABSTRACT

Real-time quantitative analysis of tetracyclines is urgently needed to provide consumers with early warning of potential risks. Herein, we report a dual-mode green emissive fluorescent probe, which refers to the liquid mode and the solid mode of electrospun films doped with nitride-doped carbon nanosheets (NCNSs) for real-time detection of doxycycline (DOX). Highly fluorescent NCNSs were prepared by low-temperature solid treatment of urea and sodium citrate. With the addition of DOX, the green emission intensity of NCNSs at 475 nm can be obviously reduced. Method validation exhibited a good linear relationship in 0.05-150 µM between the fluorescence quenching of NCNSs and the concentration of DOX with a limit of detection (LOD) of 0.0127 µM. Furthermore, the immobilization of NCNSs in PAN carriers forming electrospun films stabilizes the green fluorescence of NCNSs. Additionally, electrospun films integrated into a smartphone were developed for real-time detection of DOX with LOD of 0.285 µM. Additionally, DOX in milk was monitored with satisfactory recoveries. Therefore, the integration of the smartphone and electrospun film provides a promising and convenient method for real-time identification of DOX in food analysis.


Subject(s)
Doxycycline , Fluorescent Dyes , Animals , Doxycycline/analysis , Milk/chemistry , Smartphone , Anti-Bacterial Agents/analysis
7.
Mikrochim Acta ; 190(9): 364, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612517

ABSTRACT

A stainless steel mesh (SSM) with the feature of flexibility was employed as the colorimetric biosensor substrate, and aptamer was bond onto the surface of the SSM. Through the cross-linking of ionic liquids (ILs), AuPt nanoparticles were deposited  onto the surface of Fe3O4 material to obtain a magnetic nanozyme with high peroxidase catalytic activity and rapid color change. Through the competing interaction of OTA and cDNA with aptamer, AuPt@IL@Fe3O4 signal probe was separated to catalyze the 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) system to observe the color by bare eye and record the absorbance at 652 nm using a UV-spectrophotometer. Through the study of the catalytic properties on the basis of the Michaelis equation, AuPt@IL@Fe3O4 nanozyme presented a Vmax of 3.85 × 10-8 M s-1 and Km of 0.01 mM. Under the optimized conditions, the linear range of the colorimetric biosensor towards OTA was 5-100 ng mL-1, and the detection limit was 0.078 ng mL-1. This biosensor was applied to beer and corn samples with recoveries of 70.4-102.6% and 93.3-104.7%, respectively. Results showed that this sensor is a portable, rapid, economical, sensitive visual sensing platform towards mycotoxin in real samples.


Subject(s)
Ionic Liquids , Ochratoxins , Colorimetry , Hydrogen Peroxide , Oligonucleotides
8.
Food Chem ; 422: 136263, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37141755

ABSTRACT

The content of food colorant in food and environment should be limited to a safe range. Thus, cost-effective, and environmental-friendly detoxification technology is urgent for food safety and environmental protection. In this work, defective-functionalized g-C3N4 was successfully fabricated via intermediate engineering strategy. The prepared g-C3N4 possesses large specific surface area with abundant in-plane pores. Carbon vacancy and N-CO unit are introduced into g-C3N4 molecular framework, endowing the different degrees of n-type conductivity in varied domains. And then the n-n homojunction is generated. This homojunction structure is demonstrated to be efficient in separation and transfer of photoinduced charge carriers, and causes enhanced photocatalytic detoxification of lemon yellow under visible light. Furthermore, as-prepared g-C3N4 in lemon tea enable completely removed lemon yellow without obvious effect on its overall acceptability. The findings deepen the understanding on the defect-induced self-functionality of g-C3N4, and prove the application potential of photocatalytic technology in contaminated beverages.


Subject(s)
Light , Water , Catalysis , Carbon , Beverages
9.
Toxins (Basel) ; 15(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37104230

ABSTRACT

Ochratoxin A (OTA), as a common mycotoxin, has seriously harmful effects on agricultural products, livestock and humans. There are reports on the regulation of SakA in the MAPK pathway, which regulates the production of mycotoxins. However, the role of SakA in the regulation of Aspergillus westerdijkiae and OTA production is not clear. In this study, a SakA deletion mutant (ΔAwSakA) was constructed. The effects of different concentrations of D-sorbitol, NaCl, Congo red and H2O2 on the mycelia growth, conidia production and biosynthesis of OTA were investigated in A. westerdijkiae WT and ΔAwSakA. The results showed that 100 g/L NaCl and 3.6 M D-sorbitol significantly inhibited mycelium growth and that a concentration of 0.1% Congo red was sufficient to inhibit the mycelium growth. A reduction in mycelium development was observed in ΔAwSakA, especially in high concentrations of osmotic stress. A lack of AwSakA dramatically reduced OTA production by downregulating the expression of the biosynthetic genes otaA, otaY, otaB and otaD. However, otaC and the transcription factor otaR1 were slightly upregulated by 80 g/L NaCl and 2.4 M D-sorbitol, whereas they were downregulated by 0.1% Congo red and 2 mM H2O2. Furthermore, ΔAwSakA showed degenerative infection ability toward pears and grapes. These results suggest that AwSakA is involved in the regulation of fungal growth, OTA biosynthesis and the pathogenicity of A. westerdijkiae and could be influenced by specific environmental stresses.


Subject(s)
Mycotoxins , Ochratoxins , Humans , Virulence , Sodium Chloride , Congo Red , Hydrogen Peroxide , Ochratoxins/toxicity
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122689, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37043835

ABSTRACT

The study aimed to provide new information of Rosa roxburghii Tratt (RRT) for the production of functional foods and distinguish the geographical origins of RRT. The nutritional components of RRT from three regions in China, such as vitamin C, polysaccharides, total flavonoids, and total phenolics, and their antioxidant activities were analyzed by one-way ANOVA. The results of Fourier transform infrared spectroscopy (FT-IR) combined with principal component analysis (PCA), stepwise linear discriminant analysis (SLDA), k-nearest neighbor (k-NN), and support vector machine (SVM) were used to establish discriminant models to identify the geographical origin of RRT. The results of one-way ANOVA showed that the contents of some nutrients and antioxidant activity were significantly different among RRT from different regions and their FT-IR spectra also showed significant differences. The characteristic fingerprint bands of FT-IR (1679-1618 cm-1and 1520-900 cm-1) closely related to the geographical origins of RRT were screened out. Based on SLDA, a discriminant model was established to realize the classification and identification of RRT from different regions and the correct discrimination rate of the testing sample set obtained with the established model reached 100 %. Geographical factors caused the obvious differences in nutritional components and antioxidant activity in RRT. The characteristic fingerprint bands of RRT obtained with FT-IR could be used to identify the geographical origins of RRT more quickly and accurately.


Subject(s)
Rosa , Spectroscopy, Fourier Transform Infrared/methods , Rosa/chemistry , Antioxidants , Spectrophotometry, Infrared , Discriminant Analysis
11.
Crit Rev Anal Chem ; : 1-22, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36971430

ABSTRACT

Although all countries have been controlling the excessive use of pesticides, incidents of pesticide residues still existed. Electrochemical biosensors are extensively applied detection techniques to monitor pesticides with the help of different types of biorecognition components mainly including, antibodies, aptamers, enzymes (i.e., acetylcholinesterase, organophosphorus hydrolase, etc.), and synthetic molecularly imprinted polymers. Besides, the electrode materials mainly affected the sensitivity of electrochemical biosensors. Metallic nanomaterials with various structures and excellent electrical conductivity were desirable choice to construct electrochemical platforms to achieve the detection with high sensitivity and good specificity toward the target. This work reviewed the developed metallic materials including monometallic nanoparticles, bimetallic nanomaterials, metal atoms, metal oxides, metal molybdates, metal-organic frameworks, MXene, etc. Integration of recognition elements endowed the electrode materials with higher specificity toward the target pesticide. Besides, future challenges of metallic nanomaterials-based electrochemical biosensors for the detection of pesticides are also discussed and described.

12.
Food Chem X ; 17: 100532, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36845508

ABSTRACT

This study aimed to analyze the effect of methylglyoxal (MGO) on the structure and allergenicity of shrimp tropomyosin (TM) during thermal processing. The structural changes were determined by SDS-PAGE, intrinsic fluorescence, circular dichroism, and HPLC-MS/MS. The allergenicity was evaluated by in vitro and in vivo experiments. MGO could cause conformational structural changes in TM during thermal processing. Moreover, the Lys, Arg, Asp, and Gln residues of TM were modified by MGO, which could destroy and/or mask TM epitopes. In addition, TM-MGO samples could lead to lower mediators and cytokines released from RBL-2H3 cells. In vivo, TM-MGO caused a significant reduction in antibodies, histamine, and mast cell protease 1 levels in sera. These results indicate that MGO can modify the allergic epitopes and reduce the allergenicity of shrimp TM during thermal processing. The study will help to understand the changes in the allergenic properties of shrimp products during thermal processing.

13.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36651301

ABSTRACT

Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.

14.
Crit Rev Anal Chem ; 53(8): 1766-1791, 2023.
Article in English | MEDLINE | ID: mdl-35235478

ABSTRACT

Organophosphorus pesticides were easily remained in fruits and vegetables which would be harm to the environmental safety and human health. In recent years, due to the simple preparation process, fast response and high sensitivity, the electrochemical (bio)sensors have received increasing attention, which were extensively used as the sensing platform for the detection of OPPs. The mechanisms for the determination of OPPs mainly included redox of nitrophenyl OPPs, enzyme hydrolysis and inhibition, immunosensor, aptasensor. Nowadays, the mainly explored electrode material has focused on metal-organic frameworks, metal and metal derivatives, carbon materials (carbon nanotube, graphene, g-C3N4), MXene, etc. These nanomaterials played important roles in the electrochemical (bio)sensors, which included: (a) as an electrocatalyst to promote the redox reaction, (b) as a carrier to load the enzyme or aptamer, (c) as a recognizer to identify the targets. The nanomaterials-based electrochemical (bio)sensor was a rapid, cost-effective methods to detect OPPs with high sensitivity. Besides, this review compared the analytical performance of different nanomaterials-based electrochemical (bio)sensors, and also identified the key challenges in the future. It would provide new ideas and insights to the further development and application of electrochemical (bio)sensors and the detection of pesticides in real samples.


Subject(s)
Biosensing Techniques , Nanostructures , Pesticides , Humans , Organophosphorus Compounds , Electrochemical Techniques/methods , Pesticides/analysis , Biosensing Techniques/methods , Immunoassay , Electrodes
15.
Molecules ; 29(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202596

ABSTRACT

Bisphenol A diglycidyl ether (BADGE) is widely present in the inner coating of metal food cans, from which it can migrate into food and generate harmful derivatives during storage, such as bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether, and bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether. Here, a gold-nanoparticle-based immunochromatographic strip assay based on a broad-spectrum polyclonal antibody was developed for the simultaneous detection of BADGE and its derivatives, which could be accomplished within 15 min. The quantitative analysis of the visualization results was performed using Adobe Photoshop CC 2021, and the detection limit, defined as the concentration causing 15% inhibition, was 0.97 ng/mL. The recoveries of BADGE and its derivatives at various spiking levels in canned food samples ranged from 79.86% to 93.81%. The detection results of the proposed immunochromatographic strip assay were validated via high-performance liquid chromatography, showing a good correlation coefficient (R2 = 0.9580).


Subject(s)
Antibodies , Benzhydryl Compounds , Epoxy Compounds , Food, Preserved , Phenols
16.
J Agric Food Chem ; 70(38): 12211-12219, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36100997

ABSTRACT

Zearalenone has attracted worldwide attention due to its toxic properties and threat to public health. A rapid determination method for zearalenone and its derivatives by hydrophilic covalent organic frameworks coated steel sheet (HCOFCS) combined with ambient mass spectrometry (AMS) was developed. The HCOFCS behaved as both a tip for solid-phase microextraction and a solid substrate for electrospray ionization mass spectrometry (ESI-MS). To evaluate the HCOFCS-ESI-MS method, five zearalenone and its derivatives in milk samples were determined, including zearalenone (ZEA), α-zearalenol (α-ZEL), ß-zearalenol (ß-ZEL), α-zearalanol (α-ZAL), and ß-zearalanol (ß-ZAL). After the extraction procedure, the HCOFCS was directly added with a high voltage for ESI-MS, and the analysis could be completed within 1 min. The developed method showed good linearity in the range 0.1-100 µg/L with a coefficient of determination (R2) > 0.9991. The limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.05 to 0.1 and 0.2 to 0.3 µg/L, respectively. The results demonstrated that the HCOFCS combined with ESI-MS can be used for the rapid and sensitive determination of trace ZEA and its derivatives in milk samples with satisfactory recoveries from 80.58% to 109.98% and reproducibility with relative standard deviations (RSDs) no more than 11.18%. Furthermore, HCOFCS showed good reusability, which could reuse at least 10 extraction cycles with satisfactory adsorption performance.


Subject(s)
Metal-Organic Frameworks , Zearalenone , Zeranol , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Solid Phase Extraction/methods , Steel/analysis , Tandem Mass Spectrometry/methods , Zearalenone/chemistry , Zeranol/analogs & derivatives
17.
Analyst ; 147(18): 4105-4115, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35968735

ABSTRACT

In this work, a simple, sensitive and selective colorimetric method was established for the detection of profenofos. Firstly, novel flower-shaped AuPtRh trimetallic nanospheres were synthesized via a simple one-pot method, and had outstanding peroxidase catalytic activity. AuPtRh nanospheres with a great specific surface area were linked with an aptamer via Au-S and Pt-S bonds to specifically recognize profenofos. A graphene oxide grafted stainless-steel mesh (SSM-GO) was prepared to be a carrier and the aptamer-AuPtRh was nonspecifically adsorbed on the surface of SSM-GO, which was to be the capture probe for the detection of profenofos in real samples. They were characterized and confirmed by transmission electron microscopy, atomic force microscopy, etc. Through the investigation of the catalytic performance on the basis of the Michaelis equation, the Vmax of AuPtRh nanospheres was 22.27 × 10-8 M s-1, and Km was 0.6632 mM, which indicated that the affinity of AuPtRh nanospheres was relatively higher than that of horseradish peroxidase and Au NPs. In the presence of profenofos, the aptamer-AuPtRh would specifically combine with profenofos, which would further detach from SSM-GO. Then, it was introduced into the 3,3',5,5'-tetramethylbenzidine/H2O2 (TMB/H2O2) system to form blue oxTMB. The linear range of this colorimetric biosensor was 1-300 ng L-1 and the limit of detection was 0.725 ng L-1. It also had good recovery and anti-interference ability in real samples, which provided a new strategy for the rapid detection of pesticides.


Subject(s)
Biosensing Techniques , Colorimetry , Biosensing Techniques/methods , Colorimetry/methods , Hydrogen Peroxide/chemistry , Oligonucleotides , Organothiophosphates
18.
Front Microbiol ; 13: 885092, 2022.
Article in English | MEDLINE | ID: mdl-35602020

ABSTRACT

Nowadays, developing new and natural compounds with antibacterial activities from plants has become a promising approach to solve antibiotic resistance of pathogenic bacteria. Chlorogenic acid (CA), as a kind of phenolic acid existing in many plants, has been found to process multifunctional activities including antibacterial activity. Herein, the antibacterial and antibiofilm activities of CA against Yersinia enterocolitica (Y. enterocolitica) were tested for the first time, and its mechanism of action was investigated. It was demonstrated that CA could exert outstanding antibacterial activity against Y. enterocolitica. Biofilm susceptibility assays further indicated that CA could inhibit biofilm formation and decrease the established biofilm biomass of Y. enterocolitica. It was deduced that through binding to Y. enterocolitica, CA destroyed the cell membrane, increased the membrane permeability, and led to bacterial cell damage. In addition, the transcriptomic analysis revealed that CA could disorder many physiological pathways, mainly including the ones of antagonizing biofilms and increasing cell membrane permeability. Finally, the spiked assay showed that the growth of Y. enterocolitica in milk was significantly inhibited by CA. Taken together, CA, as an effective bactericidal effector with application potential, exerts antagonistic activity against Y. enterocolitica by mainly intervening biofilm formation and membrane permeability-related physiological pathways.

19.
Crit Rev Anal Chem ; : 1-22, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35549956

ABSTRACT

With the improvement of people's safety awareness, the requirement of pesticide detection is gradually increasing, and many new detection methods toward Organophosphorus pesticide (OPs) has been further developed and applied. Nanomaterials-based biosensors have played an important role in the trace detection of OPs. This article mainly introduces the detection principle of enzymes and aptamers as the identification element of biosensors. Various nanomaterials (i.e., metals and metal oxides, carbon nanotubes, graphene and graphene oxide, quantum dots, metal organic frameworks, molecular imprinted polymers, etc.) possess their unique properties and play different roles in the enzyme and aptamer-based biosensors toward OPs: (a) to produce the optical or electrochemical signal; (b) as a carrier to load the enzyme or aptamer; (c) to enhance the signal response. Besides, the intelligent portable devices provide the possibility to realize the onsite and real-time detection. The limitations of some nanomaterials and the future development are discussed. Finally, the future of enzyme and aptamer-based biosensors has prospected.

20.
Foods ; 11(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407032

ABSTRACT

Timely detection of Staphylococcus aureus (S. aureus) is critical because it can multiply to disease-causing levels in a matter of hours. Herein, a simple and sensitive DNA tetrahedral (Td) fluorescence signal amplifier with blue carbon quantum dots (bCDs) was prepared for sandwich detection of S. aureus. bCD was modified at the apex of Td, and an aptamer on Td was used to accurately identify and "adsorb" the amplifier to the surface of S. aureus. Atomic force microscopy (AFM) demonstrates the successful preparation of this signal amplifier. The fluorescence intensity emitted in this strategy increased 4.72 times. The strategy showed a stronger fluorescence intensity change, sensitivity (linear range of 7.22 × 100-1.44 × 109 CFU/mL with a LOD of 4 CFU/mL), and selectivity. The recovery rate in qualified pasteurized milk and drinking water samples was 96.54% to 104.72%. Compared with simple aptamer sandwich detection, these fluorescence signal amplifiers have improved fluorescence detection of S. aureus. Additionally, this fluorescent signal amplification strategy may be applied to the detection of other food pathogens or environmental microorganisms in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...