Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1168378, 2023.
Article in English | MEDLINE | ID: mdl-37275148

ABSTRACT

Numerous different species of LAB are used in different fields due to their unique characteristics. However, Lacticaseibacillus chiayiensis, a newly established species in 2018, has limited microorganism resources, and lacks comprehensive evaluations of its properties. In this study, L. chiayiensis AACE3, isolated from fermented blueberry, was evaluated by genomic analysis and in vitro assays of the properties. The genome identified genes associated with biofilm formation (luxS, ccpA, brpA), resistance to oxidative stress (tpx, trxA, trxB, hslO), tolerance to acidic conditions (dltA, dltC), resistance to unfavorable osmotic pressure (opuBB, gbuA, gbuB, gbuC), and adhesion (luxS, dltA, dltC). The AACE3 showed 112 unique genes, relative to the other three L. chiayiensis strains. Among them, the presence of genes such as clpP, pepO, and feoA suggests a possible advantage of AACE3 over other L. chiayiensis in terms of environmental adaptation. In vitro evaluation of the properties revealed that AACE3 had robust antibacterial activity against eight common pathogens: Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, Salmonella choleraesuis, Shigella flexneri, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, AACE3 showed more than 80% survival rate in all tests simulating gastrointestinal fluid, and it exhibited high antioxidant capacity. Interestingly, the cell culture supernatant was superior to intact organisms and ultrasonically crushed bacterial extracts in all tests of antioxidant capacity. These results suggested that the antioxidant capacity may originate from certain metabolites and extracellular enzymes produced by AACE3. Moreover, AACE3 was a moderate biofilm producer due to the self-agglomeration effect. Taken together, L. chiayiensis AACE3 appears to be a candidate strain for combating the growing incidence of pathogen infections and antioxidant production.

2.
Curr Res Food Sci ; 6: 100484, 2023.
Article in English | MEDLINE | ID: mdl-37033741

ABSTRACT

Foodborne pathogens and their biofilms pose a risk to human health through food chain. However, the bacteriocin resources combating this threat are still limited. Here, Lacticaseibacillus rhamnosus, one of the most used probiotics in food industry, was prepared on a large scale using alternating tangential flow (ATF) perfusion-based technology. Compared to the conventional fed-batch approach, ATF perfusion remarkably increased the viable cells of L. rhamnosus CLK 101 to 11.93 ± 0.14 log CFU/mL. Based on obtained viable cells, we purified and characterized a novel bacteriocin CLK_01 with a broad spectrum of activity against both Gram-positive and Gram-negative foodborne pathogens. LC-MS/MS analysis revealed that CLK_01 has a molecular mass of 701.49 Da and a hydrophobic amino acid composition of I-K-K-V-T-I. As a novel bacteriocin, CLK_01 showed high thermal stability and acid-base tolerance over 25-121 °C and pH 2-10. It significantly reduced cell viability of bacterial pathogens (p < 0.001), and strongly inhibited their biofilm formation. Scanning electron microscopy demonstrated deformation of pathogenic cells caused by CLK_01, leading to cytoplasmic content leakage and bacterial death. Summarily, we employed ATF perfusion to obtain viable L. rhamnosus, and presented that bacteriocin CLK_01 could serve as a promising biopreservative for controlling foodborne pathogenic bacteria and their biofilms.

3.
Front Microbiol ; 14: 1120263, 2023.
Article in English | MEDLINE | ID: mdl-37007532

ABSTRACT

Lactic acid bacteria are generally regarded as alternatives to antibiotics in livestock and poultry farming, especially Lactobacillus strains, which are safe and have probiotic potential. Although Lactobacillus salivarius has long been proposed to be a probiotic, the understanding of the roles of this species is still in its infancy. Here, a strain of L. salivarius CGMCC20700 isolated from the intestinal mucosa of Yunnan black-bone chicken broilers was investigated in the context of its safety and probiotic characteristics by whole-genome sequencing in parallel with phenotypic analysis. Whole-genome sequencing results showed that L. salivarius CGMCC20700 has a single scaffold of 1,737,577 bp with an average guanine-to-cytosine (GC) ratio of 33.51% and 1,757 protein-coding genes. The annotation of Clusters of Orthologous Groups (COG) classified the predicted proteins from the assembled genome as possessing cellular, metabolic, and information-related functions. Sequences related to risk assessment, such as antibiotic resistance and virulence genes, were identified, and the strain was further confirmed as safe according to the results of antibiotic resistance, hemolytic, and acute oral toxicology tests. Two gene clusters of antibacterial compounds and broad-spectrum antimicrobial activity were identified using genome mining tools and antibacterial spectrum tests. Stress resistance genes, active stressor removal genes, and adhesion related genes that were identified and examined with various phenotypic assays (such as stress tolerance tests in acids and bile salts and auto aggregation and hydrophobicity assays). The strain showed a high survival rate in the presence of bile salts and under acidic conditions and exhibited significant auto aggregation capacity and hydrophobicity. Overall, L. salivarius CGMCC20700 demonstrated excellent safety and probiotic potential at both the genomic and physiological levels and can be considered an appropriate candidate probiotic for livestock and poultry farming.

SELECTION OF CITATIONS
SEARCH DETAIL
...