Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
BMC Med ; 20(1): 470, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482371

ABSTRACT

BACKGROUND: The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective. METHODS: Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME. The ex vivo and in vivo studies were carried out to evaluate the anti-tumor effect. Proteomics was applied to identify the potential target and signaling pathways. CRISPR-Cas9 was used to knock out target genes. The changes of immune cells were monitored by flow cytometry. The correlation between PKCδ and PD-L1 was verified by clinical samples. RESULTS: We proposed that PKCδ, a gatekeeper of immune homeostasis with kinase activity, is responsible for the un-inflamed phenotype in EGFR-mutated lung tumors. It promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to immune exclusion and assists cancer cell escape from T cell surveillance. Ablation of PKCδ enhances the intratumoral penetration of T cells and suppresses the growth of tumors. Furthermore, blocking PKCδ significantly sensitizes the tumor to immune checkpoint blockade (ICB) therapy (αPD-1) in vitro and in vivo model. CONCLUSIONS: These findings revealed that PKCδ is a critical switch to induce inflamed tumors and consequently enhances the efficacy of ICB therapy in EGFR-mutated lung cancer. This opens a new avenue for applying immunotherapy against recalcitrant tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase C-delta , Humans , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Proteomics , Tumor Microenvironment , Protein Kinase C-delta/genetics
2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077054

ABSTRACT

A-to-I RNA editing and m6A modification are two of the most prevalent types of RNA modifications controlling gene expression in mammals and play very important roles in tumorigenesis and tumor progression. However, the functional roles and correlations of these two RNA modifications remain to be further investigated in cancer. Herein, we show that ADAR1, an A-to-I RNA-editing enzyme, interacts with METTL3 and increases its protein level to promote the proliferation, migration and invasion of breast cancer cells through a mechanism connecting ADAR1, METTL3 and YTHDF1. We show that both ADAR1 and METTL3 are upregulated in breast cancer samples, and ADAR1 positively correlates with METTL3; ADAR1 edits METTL3 mRNA and changes its binding site to miR532-5p, leading to increased METTL3 protein, which further targets ARHGAP5, recognized by YTHDF1. Additionally, we show that loss of ADAR1 significantly inhibits breast cancer growth in vivo. Collectively, our findings identify the ADAR1-METTL3 axis as a novel, important pathway that connects A-to-I editing and m6A RNA modifications during breast cancer progression.


Subject(s)
Adenosine Deaminase/metabolism , Breast Neoplasms , Methyltransferases/metabolism , MicroRNAs , RNA-Binding Proteins/metabolism , Adenosine Deaminase/genetics , Breast Neoplasms/genetics , Female , GTPase-Activating Proteins/metabolism , Humans , MicroRNAs/genetics , RNA Editing , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
3.
Innovation (Camb) ; 3(1): 100191, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34977835

ABSTRACT

Doublecortin-like kinase 1 (DCLK1) is upregulated in many tumors and is a marker for tumor stem cells. Accumulating evidence suggests DCLK1 constitutes a promising drug target for cancer therapy. However, the regulation of DCLK1 kinase activity is poorly understood, particularly the function of its autoinhibitory domain (AID), and, moreover, no physiological activators of DCLK1 have presently been reported. Here we determined the first DCLK1 kinase structure in the autoinhibited state and identified the neuronal calcium sensor HPCAL1 as an activator of DCLK1. The C-terminal AID functions to block the ATP-binding site and is competitive with ATP. HPCAL1 binds directly to the AID in a Ca2+-dependent manner, which releases the autoinhibition. We also analyzed cancer-associated mutations occurring in the AID and elucidate how these mutations disrupt DCLK1 autoinhibition to elicit kinase activity upregulation. Our results present a molecular mechanism for autoinhibition and activation of DCLK1 kinase activity and provide insights into DCLK1-associated tumorigenesis.

4.
Cell Transplant ; 30: 9636897211053203, 2021.
Article in English | MEDLINE | ID: mdl-34719306

ABSTRACT

Methionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB1 in human colorectal cancer (CRC). Herein, we detected MsrB1 expression level in CRC tissue and cell lines, and investigated the effect of MsrB1 knockdown on CRC phenotypes and possible mechanisms involved in. The results showed that MsrB1 was highly expressed in both CRC tissues and cell lines, and that cell proliferation, migration and invasion were significantly inhibited, but apoptosis was increased after MsrB1 knockdown in colorectal cancer HCT116 and RKO cell lines, compared to control siRNA group. In addition, E-cadherin protein level was increased, vimentin and Snail protein were greatly decreased after knockdown of MsrB1 in cells. Furthermore, pGSK-3ß (Ser9) and ß-catenin protein levels were reduced, the promoter activity of TCF/LEF construction was inhibited after MsrB1 knockdown in cells, suggesting that GSK-3ß/ß-catenin signaling axis was involved in the tumorigenesis of CRC. In conclusion, the oncogenic role and related mechanisms of MsrB1 in CRC discovered in our work determined the potential role of MsrB1 as a biomarker and may provide a new target for clinical therapy of CRC.


Subject(s)
Colorectal Neoplasms/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Methionine Sulfoxide Reductases/metabolism , beta Catenin/metabolism , Cell Proliferation , Humans , Neoplasm Invasiveness , Signal Transduction , Transfection
5.
Drug Dev Res ; 82(1): 133-142, 2021 02.
Article in English | MEDLINE | ID: mdl-32931039

ABSTRACT

Cancers resist targeted therapeutics by drug-escape signaling. Multitarget drugs co-targeting cancer and drug-escape mediators (DEMs) are clinically advantageous. DEM coverage may be expanded by drug combinations. This work evaluated to what extent the kinase DEMs (KDEMs) can be optimally co-targeted by drug combinations based on target promiscuities of individual drugs. We focused on 41 approved and 28 clinical trial small molecule kinase inhibitor drugs with available experimental kinome and clinical pharmacokinetic data. From the kinome inhibitory profiles of these drugs, drug combinations were assembled for optimally co-targeting an established cancer target (EGFR, HER2, ABL1, or MEK1) and 9-16 target-associated KDEMs at comparable potency levels as that against the cancer target. Each set of two-, three-, and four-drug combinations co-target 36-71%, 44-89%, 50-88%, and 27-55% KDEMs of EGFR, HER2, ABL1, and MEK1, respectively, compared with the 36, 33, 38, and 18% KDEMs maximally co-targeted by an existing drug or drug combination approved or clinically tested for the respective cancer. Some co-targeted KDEMs are not covered by any existing drug or drug combination. Our work suggested that novel drug combinations may be constructed for optimally co-targeting cancer and drug escape by the exploitation of drug target promiscuities.


Subject(s)
Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Antineoplastic Agents/pharmacokinetics , Drug Combinations , Drug Delivery Systems , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinases/metabolism
6.
Cell Transplant ; 29: 963689720958656, 2020.
Article in English | MEDLINE | ID: mdl-32907379

ABSTRACT

8-Chloro-adenosine (8-Cl-Ado) has been shown to exhibit its antitumor activity by inducing apoptosis in human lung cancer A549 and H1299 cells or autophagy in chronic lymphocytic leukemia, and MDA-MB-231 and MCF-7 breast cancer cells. Adenosine deaminases acting on RNA 1 (ADAR1) is tightly associated with cancer development and progression. The aim of this study was to investigate the role of ADAR1 in the proliferation of MDA-MB-231 and SK-BR-3 breast cancer cell lines after 8-Cl-Ado exposure and its possible mechanisms. After 8-Cl-Ado exposure, CCK-8 assay was performed to determine the cell proliferation; flow cytometry was used to analyze the cell cycle profiles and apoptosis; and the protein levels of ADAR1, p53, p21, and cyclin D1 were measured by western blotting. The results showed that the cell proliferation was greatly inhibited, G1 cell cycle was arrested, and apoptosis was induced after 8-Cl-Ado exposure. ADAR1 and cyclin D1 protein levels were dramatically decreased, while p53 and p21 levels were increased after 8-Cl-Ado exposure. Moreover, the cell growth inhibition was rescued, apoptosis was reduced, and p53 and p21 protein levels were downregulated, while cyclin D1 was upregulated when cells were transfected with plasmids expressing ADAR1 proteins. More importantly, RNA-binding domain of ADAR1 is critical to the cell growth inhibition of breast cancer cells exposed to 8-Cl-Ado. Together, 8-Cl-Ado inhibits the cell proliferation, induces G1 phase arrest and apoptosis at least by targeting ADAR1/p53/p21 signaling pathway. The findings may provide us with insights into the role of ADAR1 in breast cancer progression and help us better understand the effects of 8-Cl-Ado in the treatment of breast cancer.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Adenosine Deaminase/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , RNA-Binding Proteins/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , 2-Chloroadenosine/pharmacology , Adenosine Deaminase/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/drug effects , Female , Humans , Protein Domains , RNA-Binding Proteins/chemistry , Signal Transduction/drug effects
7.
Oncogenesis ; 9(5): 50, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415090

ABSTRACT

Aberrant expression of protein arginine methyltransferases (PRMTs) has been implicated in a number of cancers, making PRMTs potential therapeutic targets. But it remains not well understood how PRMTs impact specific oncogenic pathways. We previously identified PRMTs as important regulators of cell growth in neuroblastoma, a deadly childhood tumor of the sympathetic nervous system. Here, we demonstrate a critical role for PRMT1 in neuroblastoma cell survival. PRMT1 depletion decreased the ability of murine neuroblastoma sphere cells to grow and form spheres, and suppressed proliferation and induced apoptosis of human neuroblastoma cells. Mechanistic studies reveal the prosurvival factor, activating transcription factor 5 (ATF5) as a downstream effector of PRMT1-mediated survival signaling. Furthermore, a diamidine class of PRMT1 inhibitors exhibited anti-neuroblastoma efficacy both in vitro and in vivo. Importantly, overexpression of ATF5 rescued cell apoptosis triggered by PRMT1 inhibition genetically or pharmacologically. Taken together, our findings shed new insights into PRMT1 signaling pathway, and provide evidence for PRMT1 as an actionable therapeutic target in neuroblastoma.

8.
Bioorg Med Chem Lett ; 30(6): 126966, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32001136

ABSTRACT

Herein, we report the discovery of a series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies of these compounds led to the identification of the most potent compound, 3-(3-methoxybenzyl)-6-(1H-pyrrolo[2,3-b]pyridin-4-yl)thieno[2,3-d]pyrimidin-4(3H)-one (8k), which showed IC50 values of 0.004 µM and 0.001 µM against ROCK Ⅰ and ROCK Ⅱ, respectively. In vitro, 8k significantly reduced the phosphorylation level of ROCK downstream signaling protein and induce changes in cell morphology and migration. Overall, this study provides a promising lead compound for drug discovery targeting ROCKs.


Subject(s)
Protein Kinase Inhibitors/chemistry , Pyrimidinones/chemistry , rho-Associated Kinases/antagonists & inhibitors , Cell Movement/drug effects , Drug Discovery , Humans , Phosphorylation , Protein Kinase Inhibitors/metabolism , Pyrimidinones/metabolism , Structure-Activity Relationship
9.
Food Chem Toxicol ; 135: 110921, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31669597

ABSTRACT

Determining chemical carcinogenicity in the early stages of drug discovery is fundamentally important to prevent the adverse effect of carcinogens on human health. There has been a recent surge of interest in developing computational approaches to predict chemical carcinogenicity. However, the predictive power of many existing approaches is limited, and there is plenty of room for improvement. Here, we develop a new deep learning architecture, termed CapsCarcino, to distinguish between carcinogens and noncarcinogens. CapsCarcino is constructed based on a dynamic routing algorithm that requires less data, extracts more comprehensive information, and does not require feature selection. We find that CapsCarcino provides a significantly improved predictive and generalization ability over, and outperforms five other machine learning models. Specifically, the best model of CapsCarcino achieves an accuracy of 85.0% on an external validation dataset. In addition, we discover that the enhanced predictive capability of CapsCarcino over that of the other methods is robust and can be achieved using sparse datasets. Training on merely 20% of the dataset, CapsCarcino performs comparably to the other methods based on the full training dataset. Further mechanism analysis indicates that CapsCarcino could efficiently learn the characteristics of carcinogens even if structural alerts are insufficiently represented. The results indicate that CapsCarcino should be helpful for carcinogen risk assessment.


Subject(s)
Carcinogens/chemistry , Deep Learning , Animals , Databases, Chemical/statistics & numerical data , Rats
10.
Cell Death Dis ; 10(10): 722, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31558703

ABSTRACT

Since publication of this article, the authors have noticed that there were errors in Fig. 1b (the CT 26 cells colony formation images) and Fig. 7c (the vehicle group images). As a result of the misfiling of the data during preparation of figures, incorrect images were inadvertently inserted in these figures.An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Cancer Lett ; 458: 76-85, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31125641

ABSTRACT

Limited drug response and severe drug resistance confer the high mortality of non-small-cell lung cancer (NSCLC), a leading cause of cancer death worldwide. There is an urgent need for novel treatment against NSCLC. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is aberrantly overexpressed and participats in NSCLC development and EGFR-TKIs-induced drug resistance. Increasing evidences indicate that oncogenic ROR1 is a potential target for NSCLC therapy. However, nearly no ROR1 inhibitor was reported until now. Here, combining the computer-aided drug design and cell-based activity screening, we discover (R)-5,7-bis(methoxymethoxy)-2-(4-methoxyphenyl)chroman-4-one (ARI-1) as a novel ROR1 inhibitor. Biological evaluation demonstrates that ARI-1 specifically targets the extracellular frizzled domain of ROR1 and potently suppresses NSCLC cell proliferation and migration by regulating PI3K/AKT/mTOR signaling in a ROR1-dependent manner. Moreover, ARI-1 significantly inhibits tumor growth in vivo without obvious toxicity. Intriguingly, ARI-1 is effective to EGFR-TKIs-resistant NSCLC cells with high ROR1 expression. Therefore, our work suggests that the ROR1 inhibitor ARI-1 is a novel drug candidate for NSCLC treatment, especially for EGFR-TKIs-resisted NSCLC with high ROR1 expression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Chromones/pharmacology , Lung Neoplasms/drug therapy , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , HEK293 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Random Allocation , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Xenograft Model Antitumor Assays
13.
Chem Asian J ; 14(1): 130-134, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30474357

ABSTRACT

Peptidyl-prolyl cis-trans isomerase Pin1 plays a crucial role in the development of human cancers. Recently, we have disclosed that Pin1 regulates the biogenesis of miRNA, which is aberrantly expressed in HCC and promotes HCC progression, indicating the therapeutic role of Pin1 in HCC therapy. Here, 7-(benzyloxy)-3,5-dihydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (AF-39) was identified as a novel Pin1 inhibitor. Biochemical tests indicate that AF-39 potently inhibits Pin1 activity with an IC50 values of 1.008 µm, and also displays high selectivity for Pin1 among peptidyl prolyl isomerases. Furthermore, AF-39 significantly suppresses cell proliferation of HCC cells in a dose- and time-dependent manner. Mechanistically, AF-39 regulates the subcellular distribution of XPO5 and increases miRNAs biogenesis in HCC cells. This work provides a promising lead compound for HCC treatment, highlighting the therapeutic potential of miRNA-based therapy against human cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Discovery , Flavonols/pharmacology , Liver Neoplasms/drug therapy , MicroRNAs/genetics , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer-Aided Design , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flavonols/chemical synthesis , Flavonols/chemistry , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Molecular Structure , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Real-Time Polymerase Chain Reaction , Structure-Activity Relationship , Time Factors
14.
Drug Dev Res ; 80(2): 246-252, 2019 03.
Article in English | MEDLINE | ID: mdl-30422335

ABSTRACT

The clinical advantage of co-targeting cancer drug escape has been indicated by the percentage of these co-targeting drugs among all multi-target drugs in clinics and clinical trials. This clinical advantage needs to be further interrogated from such perspectives as the clinical impact of multi-target inhibition of drug-escape mediators. This impact may be reflected by drug sales data, that is, multi-target inhibition of higher number of drug-escape mediators favors the expanded coverage of drug-resistant patients leading to higher sales. We investigated whether this expectation is followed by the 25 FDA-approved anticancer kinase inhibitors, which were divided into 11 groups of comparable therapeutic mechanisms and approval years. We found 19 (76%) drugs to follow and 3 (12%) drugs not to follow this expectation. The remaining two (8%) and one (4%) drugs cannot be assessed due to insufficient data and incomparability. Therefore, drug sales strongly indicate the clinical advantage of multi-target inhibition of cancer drug escapes.


Subject(s)
Antineoplastic Agents/economics , Drug Resistance, Neoplasm , Molecular Targeted Therapy , Neoplasms/economics , Protein Kinase Inhibitors/economics , Antineoplastic Agents/therapeutic use , Commerce , Drug Approval , Humans , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome , United States , United States Food and Drug Administration
15.
Int J Mol Sci ; 19(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-29843366

ABSTRACT

Human lung cancer H1299 (p53-null) cells often display enhanced susceptibility to chemotherapeutics comparing to A549 (p53-wt) cells. However, little is known regarding to the association of DNA damage-response (DDR) pathway heterogeneity with drug sensitivity in these two cells. We investigated the DDR pathway differences between A549 and H1299 cells exposed to 8-chloro-adenosine (8-Cl-Ado), a potential anticancer drug that can induce DNA double-strand breaks (DSBs), and found that the hypersensitivity of H1299 cells to 8-Cl-Ado is associated with its DSB overaccumulation. The major causes of excessive DSBs in H1299 cells are as follows: First, defect of p53-p21 signal and phosphorylation of SMC1 increase S phase cells, where replication of DNA containing single-strand DNA break (SSB) produces more DSBs in H1299 cells. Second, p53 defect and no available induction of DNA repair protein p53R2 impair DNA repair activity in H1299 cells more severely than A549 cells. Third, cleavage of PARP-1 inhibits topoisomerase I and/or topoisomerase I-like activity of PARP-1, aggravates DNA DSBs and DNA repair mechanism impairment in H1299 cells. Together, DDR pathway heterogeneity of cancer cells is linked to cancer susceptibility to DNA damage-based chemotherapeutics, which may provide aid in design of chemotherapy strategy to improve treatment outcomes.


Subject(s)
2-Chloroadenosine/analogs & derivatives , Antineoplastic Agents/pharmacology , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , 2-Chloroadenosine/pharmacology , A549 Cells , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Replication , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA, Neoplasm/metabolism , Humans , Organ Specificity , Phosphorylation , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Oncotarget ; 9(17): 13652-13665, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568384

ABSTRACT

Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

17.
Trends Pharmacol Sci ; 39(3): 229-231, 2018 03.
Article in English | MEDLINE | ID: mdl-29295742

ABSTRACT

The selection of the right drug targets is critically important for the successful and cost-effective development and clinical testing of drugs. A 2009 paper reported an in silico prospective prediction of the clinical potential of 156 targets of clinical trial drugs (all of these targets were without an approved drug at the time of the paper's publication). Eight years later, the assessment of the clinical status of these targets revealed impressive capability of the in silico method in prospectively predicting the clinical success of drug targets.


Subject(s)
Computer Simulation , Drug Discovery/methods , Molecular Targeted Therapy/methods , Animals , Clinical Trials as Topic , Humans
18.
Eur J Med Chem ; 143: 1148-1164, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29133048

ABSTRACT

The RET tyrosine kinase is an important therapeutic target for medullary thyroid cancer (MTC), and drug resistance mutations of RET, particularly V804M and V804L, are a main challenge for the current targeted therapy of MTC based on RET inhibitors. In this investigation, we report the structural optimization and structure-activity relationship studies of N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives as a new class of RET inhibitors. Among all the obtained kinase inhibitors, 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-((6,7,8,9-tetrahydropyrimido[5,4-b][1,4]oxazepin-4-yl)amino)phenyl)urea (17d) is a multi-kinase inhibitor and potently inhibits RET and its drug resistance mutants. It showed IC50 (half maximal inhibitory concentration) values of 0.010 µM, 0.015 µM, and 0.009 µM against RET-wild-type, RET-V804M, and RET-V804L, respectively. 17d displayed significant anti-viability potencies against various RET-driving tumor cell lines. In a xenograft mouse model of NIH3T3-RET-C634Y, 17d exhibited potent in vivo anti-tumor activity, and no obvious toxicity was observed. Mechanisms of action were also investigated by Western blot and immunohistochemical assays. Collectively, 17d could be a promising agent for the treatment of MTC, hence deserving a further investigation.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Amines/chemical synthesis , Amines/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Structure , Mutation , NIH 3T3 Cells , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Structure-Activity Relationship
19.
J Med Chem ; 60(14): 6337-6352, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28692292

ABSTRACT

Autophagy inducers represent new promising agents for the treatment of a wide range of medical illnesses. However, safe autophagy inducers for clinical applications are lacking. Inhibition of cdc2-like kinase 1 (CLK1) was recently found to efficiently induce autophagy. Unfortunately, most of the known CLK1 inhibitors have unsatisfactory selectivity. Herein, we report the discovery of a series of new CLK1 inhibitors containing the 1H-[1,2,3]triazolo[4,5-c]quinoline scaffold. Among them, compound 25 was the most potent and selective, with an IC50 value of 2 nM against CLK1. The crystal structure of CLK1 complexed with compound 25 was solved, and the potency and kinase selectivity of compound 25 were interpreted. Compound 25 was able to induce autophagy in in vitro assays and displayed significant hepatoprotective effects in the acetaminophen (APAP)-induced liver injury mouse model. Collectively, due to its potency and selectivity, compound 25 could be used as a chemical probe or agent in future mechanism-of-action or autophagy-related disease therapy studies.


Subject(s)
Autophagy/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Protective Agents/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinolines/chemistry , Triazoles/chemistry , Acetaminophen , Animals , Cell Line , Chemical and Drug Induced Liver Injury/pathology , Humans , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Protective Agents/chemical synthesis , Protective Agents/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacology
20.
J Chem Inf Model ; 57(7): 1640-1651, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28661143

ABSTRACT

Small-molecule target identification is an important and challenging task for chemical biology and drug discovery. Structure-based virtual target identification has been widely used, which infers and prioritizes potential protein targets for the molecule of interest (MOI) principally via a scoring function. However, current "universal" scoring functions may not always accurately identify targets to which the MOI binds from the retrieved target database, in part due to a lack of consideration of the important binding features for an individual target. Here, we present IFPTarget, a customized virtual target identification method, which uses an interaction fingerprinting (IFP) method for target-specific interaction analyses and a comprehensive index (Cvalue) for target ranking. Evaluation results indicate that the IFP method enables substantially improved binding pose prediction, and Cvalue has an excellent performance in target ranking for the test set. When applied to screen against our established target library that contains 11,863 protein structures covering 2842 unique targets, IFPTarget could retrieve known targets within the top-ranked list and identified new potential targets for chemically diverse drugs. IFPTarget prediction led to the identification of the metallo-ß-lactamase VIM-2 as a target for quercetin as validated by enzymatic inhibition assays. This study provides a new in silico target identification tool and will aid future efforts to develop new target-customized methods for target identification.


Subject(s)
Models, Molecular , Proteins/metabolism , Amino Acid Sequence , Binding Sites , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Protein Binding , Protein Conformation , Proteins/chemistry , Substrate Specificity , beta-Lactamases/chemistry , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...