Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Soft Matter ; 20(32): 6424-6430, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087847

ABSTRACT

The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.

2.
RSC Adv ; 14(23): 15987-15993, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765478

ABSTRACT

The type of self-assembled structure has a significant impact on the ionic conductivity of block copolymer or liquid crystalline (LC) ion conductors. In this study, we focus on the effect of self-assembled structures on the ionic conductivity of a non-block copolymer, LC ion conductor, which is a mixture of an azobenzene monomer (NbAzo), pentaerythritol tetre(3-mercapropionate) (PETMP), and a lithium salt, lithium bis(trifluoromethane)sulfonimide (LiTFSI). The self-assembled structures and ionic conductivities of ion conductors having different doping ratios of lithium salt to monomer were examined. With the increase in the doping ratio, the self-assembled structure transforms from lamellae (LAM) to double gyroid (GYR). The effect of self-assembled structure on ionic conductivity was analyzed; it was found that the conductivity of the GYR structure was about 3.6 times that of the LAM one, indicating that obtaining the GYR structure is more effective in improving ionic conductivity.

3.
Gels ; 10(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786262

ABSTRACT

Low-viscosity slickwater fracturing fluids are a crucial technology for the commercial development of shallow shale gas. However, in deep shale gas formations with high pressure, a higher sand concentration is required to support fractures. Linear gel fracturing fluids and crosslinked gel fracturing fluids have a strong sand-carrying capacity, but the drag reduction effect is poor, and it needs to be pre-prepared to decrease the fracturing cost. Slick water fracturing fluids have a strong drag reduction effect and low cost, but their sand-carrying capacity is poor and the fracturing fluid sand ratio is low. The research and development of viscous slick water fracturing fluids solves this problem. It can be switched on-line between a low-viscosity slick water fracturing fluid and high-viscosity weak gel fracturing fluid, which significantly reduces the cost of single-well fracturing. A polyacrylamide drag reducer is the core additive of slick water fracturing fluids. By adjusting its concentration, the control of the on-line viscosity of fracturing fluid can be realized, that is, 'low viscosity for drag reduction, high viscosity for sand-carrying'. Therefore, this article introduces the research and application status of a linear gel fracturing fluid, crosslinked gel fracturing fluid, and slick water fracturing fluid for deep shale gas reservoirs, and focuses on the research status of a viscous slick water fracturing fluid and viscosity-controllable polyacrylamide drag reducer, with the aim of providing valuable insights for the research on water-based fracturing fluids in the stimulation of deep shale gas reservoirs.

4.
ACS Appl Mater Interfaces ; 15(26): 31888-31898, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37349268

ABSTRACT

Highly stretchable and conductive ionogels have great potential in flexible electronics and soft robotic skins. However, current ionogels are still far from being able to accurately duplicate the mechanically responsive behavior of real human skin. Furthermore, durable robotic skins that are applicable under harsh conditions are still lacking. Herein, a strong noncovalent interaction, ionic clusters, is combined with hydrogen bonds to obtain a physically cross-linked ionogel (PCI). Benefiting from the strong ionic bonding of the ionic cluster, the PCI shows strain-stiffening behavior similar to that of human skin, thus enabling it to have a perception-strengthening ability. Additionally, the strong ionic clusters can also ensure the PCI remains stable at high temperatures. Even when the temperature is raised to 200 °C, the PCI can maintain the gel state. Moreover, the PCI exhibits high transparency, recyclability, good adhesion, and high conductivity. Such excellent features distinguish the PCI from ordinary ionogels, providing a new way to realize skin-like sensing in harsh environments for future bionic machines.

5.
Chemistry ; 29(18): e202203702, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36656133

ABSTRACT

Construction of sub-5 nm long-range ordered structures through self-assembly has received increasing attention. Herein, a series of ODMS-based thermotropic liquid crystals (LCs) containing perylene diimide (PDI) were designed and synthesized. These LCs can form ordered nanostructures with periodic sizes around 5 nm including smectic J (SmJ), oblique columnar (Colob ), and hexagonal columnar (Colh ) phases with change in the volume fraction of ODMS, where the layer spacing of the SmJ phase is less than 5 nm. Thin films with parallel oriented nanolines with line width less than 5 nm can be obtained on PDMS-modified silicon substrates by spin-casting and simple thermal annealing processes. Moreover, owing to the strong π-π interaction between PDI cores, these nanolines are long-range ordered with uniaxial orientation in relatively large areas (1.5×1.5 µm2 ) with over 300 continuous microdomains without pre-patterning. These nanostructures provide the possibility of preparing nanotemplates by oxygen plasma etching.

SELECTION OF CITATIONS
SEARCH DETAIL