Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Oncogene ; 43(21): 1631-1643, 2024 May.
Article in English | MEDLINE | ID: mdl-38589675

ABSTRACT

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Protein Disulfide-Isomerases , Venous Thrombosis , Male , Humans , Animals , Mice , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cell Line, Tumor , Venous Thrombosis/metabolism , Venous Thrombosis/chemically induced , Venous Thrombosis/pathology , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thromboplastin/metabolism , Thromboplastin/genetics , Gene Expression Regulation, Neoplastic/drug effects
2.
Nat Commun ; 15(1): 3129, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605050

ABSTRACT

The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.


Subject(s)
Protein Disulfide-Isomerases , Proteins , Thrombosis , Animals , Mice , Disulfides , Factor XII/metabolism , Heparitin Sulfate , Protein Disulfide-Isomerases/genetics , Proteins/metabolism , Thrombosis/genetics , Thrombosis/metabolism
3.
Redox Biol ; 67: 102893, 2023 11.
Article in English | MEDLINE | ID: mdl-37741045

ABSTRACT

BACKGROUND: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel instigator for mitochondrial dysfunction, and plays an important role in the pathogenesis of cardiovascular diseases. However, the role and mechanism of DNA-PKcs in angiotensin II (Ang II)-induced vascular remodeling remains obscure. METHODS: Rat aortic smooth muscle cells (SMC) and VSMC-specific DNA-PKcs knockout (DNA-PKcsΔVSMC) mice were employed to examine the role of DNA-PKcs in vascular remodeling and the underlying mechanisms. Blood pressure of mice was monitored using the tail-cuff and telemetry methods. The role of DNA-PKcs in vascular function was evaluated using vascular relaxation assessment. RESULTS: In the tunica media of remodeled mouse thoracic aortas, and renal arteries from hypertensive patients, elevated DNA-PKcs expression was observed along with its cytoplasmic translocation from nucleus, suggesting a role for DNA-PKcs in vascular remodeling. We then infused wild-type (DNA-PKcsfl/fl) and DNA-PKcsΔVSMC mice with Ang II for 14 days to establish vascular remodeling, and demonstrated that DNA-PKcsΔVSMC mice displayed attenuated vascular remodeling through inhibition of dedifferentiation of VSMCs. Moreover, deletion of DNA-PKcs in VSMCs alleviated Ang II-induced vasodilation dysfunction and hypertension. Mechanistic investigations denoted that Ang II-evoked rises in cytoplasmic DNA-PKcs interacted with dynamin-related protein 1 (Drp1) at its TQ motif to phosphorylate Drp1S616, subsequently promoting mitochondrial fragmentation and dysfunction, as well as reactive oxygen species (ROS) production. Treatment of irbesartan, an Ang II type 1 receptor (AT1R) blocker, downregulated DNA-PKcs expression in VSMCs and aortic tissues following Ang II administration. CONCLUSION: Our data revealed that cytoplasmic DNA-PKcs in VSMCs accelerated Ang II-induced vascular remodeling by interacting with Drp1 at its TQ motif and phosphorylating Drp1S616 to provoke mitochondrial fragmentation. Maneuvers targeting DNA-PKcs might be a valuable therapeutic option for the treatment of vascular remodeling and hypertension.


Subject(s)
Angiotensin II , Hypertension , Humans , Mice , Rats , Animals , Angiotensin II/metabolism , Vascular Remodeling/physiology , Catalytic Domain , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Hypertension/metabolism , DNA/metabolism , Myocytes, Smooth Muscle/metabolism
4.
Small ; 19(48): e2302704, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37605327

ABSTRACT

Patients with osteoporotic fractures often require effective fixation and subsequent bone repair. However, currently available materials are often limited functionally, failing to improve this cohort's outcomes. Herein, kaempferol-loaded mesoporous bioactive glass nanoparticles (MBGNs)-doped orthopedic adhesives are prepared to assist osteoporotic fracture fixation and restore dysregulated bone homeostasis, including promoting osteoblast formation while inhibiting osteoclastic bone-resorbing activity to synergistically promote osteoporotic fracture healing. The injectability, reversible adhesiveness and malleable properties endowed the orthopedic adhesives with high flexibility and hemostatic performance to adapt to complex clinical scenarios. Moreover, Ca2+ and SiO4 4- ions released from MBGNs can accelerate osteogenesis via the PI3K/AKT pathway, while kaempferol mediated osteoclastogenesis inhibition and can slow down the bone resorption process through NF-κB pathway, which regulated bone regeneration and remodeling. Importantly, implementing the orthopedic adhesive is validated as an effective closed-loop management approach in restoring the dysregulated bone homeostasis of osteoporotic fractures.


Subject(s)
Osteoporotic Fractures , Humans , Osteoporotic Fractures/therapy , Kaempferols/pharmacology , Adhesives , Phosphatidylinositol 3-Kinases , Osteogenesis , Homeostasis
5.
Food Sci Nutr ; 11(6): 3141-3153, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324843

ABSTRACT

The accumulation of foam cells in arterial intima and the accompanied chronic inflammation are considered major causes of neoatherosclerosis and restenosis. However, both the underlying mechanism and effective treatment for the disease are yet to be uncovered. In this study, we combined transcriptome profiling of restenosis artery tissue and bioinformatic analysis to reveal that NLRP3 inflammasome is markedly upregulated in restenosis and that several restenosis-related DEGs are also targets of mulberry extract, a natural dietary supplement used in traditional Chinese medicine. We demonstrated that mulberry extract suppresses the formation of ox-LDL-induced foam cells, possibly by upregulating the cholesterol efflux genes ABCA1 and ABCG1 to inhibit intracellular lipid accumulation. In addition, mulberry extract dampens NLRP3 inflammasome activation by stressing the MAPK signaling pathway. These findings unveil the therapeutic value of mulberry extract in neoatherosclerosis and restenosis treatment by regulating lipid metabolism and inflammatory response of foam cells.

6.
Front Genet ; 14: 1153899, 2023.
Article in English | MEDLINE | ID: mdl-37007957

ABSTRACT

The abdominal aortic aneurysm (AAA) is characterized by segmental expansion of the abdominal aorta and a high mortality rate. The characteristics of AAA suggest that apoptosis of smooth muscle cells, the production of reactive oxygen species, and inflammation are potential pathways for the formation and development of AAA. Long non-coding RNA (lncRNA) is becoming a new and essential regulator of gene expression. Researchers and physicians are focusing on these lncRNAs to use them as clinical biomarkers and new treatment targets for AAAs. LncRNA studies are beginning to emerge, suggesting that they may play a significant but yet unidentified role in vascular physiology and disease. This review examines the role of lncRNA and their target genes in AAA to increase our understanding of the disease's onset and progression, which is crucial for developing potential AAA therapies.

7.
Exp Mol Med ; 55(5): 939-951, 2023 05.
Article in English | MEDLINE | ID: mdl-37121969

ABSTRACT

Neutrophil extracellular traps (NETs) play an important role in abdominal aortic aneurysm (AAA) formation; however, the underlying molecular mechanisms remain unclear. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may exert therapeutic effects on AAA through their immunomodulatory and regenerative abilities. This study aimed to examine the role and mechanism of MSC-EVs in regulating the development of NET-mediated AAA. Excessive release of NETs was observed in patients with AAA, and the levels of NET components were associated with the clinical outcomes of the patients. Datasets from the Gene Expression Omnibus database were analyzed and revealed that the PI3K/AKT pathway and ferroptosis were strongly associated with NETosis during AAA formation. Further experiments verified that NETs promoted AAA formation by inducing ferroptosis in smooth muscle cells (SMCs) by inhibiting the PI3K/AKT pathway. The PI3K agonist 740 Y-P, the ferroptosis inhibitor ferrostatin-1, and Padi4 deficiency significantly prevented AAA formation. MSC-EVs attenuated AAA formation by reducing NET release in an angiotensin II-induced AAA mouse model. In vitro experiments revealed that MSC-EVs reduced the release of NETs by shifting NETosis to apoptosis. Our study indicates an important role for NET-induced SMC ferroptosis in AAA formation and provides several potential targets for AAA treatment.


Subject(s)
Aortic Aneurysm, Abdominal , Extracellular Traps , Extracellular Vesicles , Ferroptosis , Mesenchymal Stem Cells , Mice , Animals , Extracellular Traps/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
8.
J Endovasc Ther ; : 15266028231159243, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927094

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of Innospring® stent, a novel self-expanding interwoven nitinol stent, in treating femoropopliteal atherosclerotic lesions. METHODS: A prospective, single-center, single-arm, first-in-human study enrolled 15 patients (mean age 73.1 years; 13 men) to evaluate the safety and efficacy of the Innospring® stent monitored by core laboratories. The inclusion criteria were claudication or ischemic rest pain, de novo lesions or nonstented restenosis, >70% stenosis, lesion length <20 cm, and a reference vessel diameter of 4-7 mm. The primary safety endpoint was 30-day major adverse events. The primary efficacy end point was stent patency at 12 months. Follow-up evaluations were conducted at 30 days, 6 months, and 12 months. RESULTS: The lesion length was 6.1 ± 3.5 mm. Fourteen (93.3%) patients had lesions of the superficial femoral artery and 3 (20.0%) patients had lesions of the popliteal artery. Nine (60.0%) patients had moderate-to-severe calcified lesion. Technical and procedural success was 100%. No patients experienced major adverse events in the first 30 days. The Rutherford category showed significant and sustained improvement at 6 and 12 months. The 12-month follow-up radiographs obtained in 13 patients confirmed the absence of stent fractures in 100% of examinations. The cumulative primary stent patency rate at 6 and 12 months were 93.3% and 84.6%, respectively. CONCLUSION: Stenting of the superficial femoral and popliteal arteries using the Innospring® stent is safe and effective. This competing interwoven nitinol stent may provide superior stent integrity and fracture-resistance as well as serve areas under extreme mechanical stress. CLINICAL IMPACT: Endovascular recanalization is a widely accepted and recommended treatment for symptomatic peripheral artery diseases. The Innospring® stent is a novel self-expanding interwoven stent containing eight nitinol wires with additional radial force, fracture-resistance, and visibility under fluoroscopy. This first-in-human study using the Innospring® stent in patients with femoropopliteal occlusive disease reported that stenting of the superficial femoral and popliteal arteries using the Innospring® stent is safe and effective. This competing interwoven nitinol stent may provide an impressive stent integrity and fracture-resistance as well as serve areas under extreme mechanical stress.

9.
Int J Biol Sci ; 19(1): 347-361, 2023.
Article in English | MEDLINE | ID: mdl-36594092

ABSTRACT

Diabetic foot ulcers (DFUs) are among the most frequent complications of diabetes with significant morbidity and mortality. Diabetes can trigger neutrophils to undergo histone citrullination by protein arginine deiminase 4 (encoded by Padi4 in mice) and release neutrophil extracellular traps (NETs). The specific mechanism of NETs-mediated wound healing impairment in diabetes remains unknown. In this study, we show neutrophils are more susceptible to NETosis in diabetic wound environments. Via in vitro experiments and in vivo models of wound healing using wide-type and Padi4 -/- mice, we demonstrate NETs can induce the activation of PAK2 via the membrane receptor TLR-9. Then PAK2 phosphorylates the intracellular protein Merlin/NF2 to inhibit the Hippo-YAP pathway. YAP binds to transcription factor SMAD2 and translocates from the cytoplasm into the nucleus to promote endothelial-to-mesenchymal transition (EndMT), which ultimately impedes angiogenesis and delays wound healing. Suppression of the Merlin/YAP/SMAD2 pathway can attenuate NET-induced EndMT. Inhibition of NETosis accelerates wound healing by reducing EndMT and promoting angiogenesis. Cumulatively, these data suggest NETosis delays diabetic wound healing by inducing EndMT via the Hippo-YAP pathway. Increased understanding of the molecular mechanism that regulates NETosis and EndMT will be of considerable value for providing cellular targets amenable to therapeutic intervention for DFUs.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Extracellular Traps , Animals , Mice , Extracellular Traps/metabolism , Neurofibromin 2/metabolism , Hippo Signaling Pathway , Wound Healing/genetics , Neutrophils/metabolism , Diabetic Foot/metabolism , Diabetes Mellitus/metabolism
10.
Thromb Haemost ; 123(1): 97-107, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462769

ABSTRACT

Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis. The mRNA expression of the synthetic biomarker Collagen Type I Alpha 1 Chain (COL1A1) gene is upregulated during the switch of VSMCs from the contractile to the synthetic phenotype. The association of noncoding circular RNAs transcribed by the COL1A1 gene with VSMC phenotype alteration and atherogenesis remains unclear. Here we reported a COL1A1 circular RNA (circCOL1A1) which is specifically expressed in VSMCs and is upregulated during phenotype alteration of VSMCs. CircCOL1A1 is also detectable in the serum or plasma. Healthy vascular tissues have a low expression of CircCOL1A1, while it is upregulated in atherosclerosis patients. Through ex vivo and in vitro assays, we found that circCOL1A1 can promote VSMC phenotype switch. Mechanistic analysis showed that circCOL1A1 may exert its function as a competing endogenous RNA of miR-30a-5p. Upregulation of circCOL1A1 ameliorates the inhibitory effect of miR-30a-5p on its target SMAD1, which leads to suppression of transforming growth factor-ß (TGF-ß) signaling. Our findings demonstrate that circCOL1A1 promotes the phenotype switch of VSMCs through the miR-30a-5p/SMAD1/TGF-ß axis and it may serve as a novel marker of atherogenesis or as a therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Atherosclerosis/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , MicroRNAs/metabolism , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle/pathology , Phenotype , RNA, Circular/genetics , RNA, Circular/metabolism , Transforming Growth Factor beta/metabolism
11.
Transl Res ; 255: 85-96, 2023 05.
Article in English | MEDLINE | ID: mdl-36435329

ABSTRACT

The neutrophil plays an important role during abdominal aortic aneurysm (AAA) formation by undergoing histone citrullination with peptidyl arginine deiminase 4 (encoded by Padi4) and releasing neutrophil extracellular traps (NETs). However, the specific role of NETs during AAA formation is elusive. We found the levels of NET components in serum and tissues were found to be significantly associated with the clinical outcome of AAA patients. Furthermore, we reported that NETs induced the synthetic and proinflammatory smooth muscle cells (SMCs) phenotype and promoted AAA formation in a Hippo-YAP pathway-dependent manner by in vitro and in vivo experiments. Padi4 or Yap global knockout mice, exhibited significantly less synthetic and proinflammatory phenotypes of SMCs and developed AAA with lower frequency and severity compared with those of controls. Further studies indicated that the phenotypic switch of SMCs was associated with NETs-regulated enrichment status of H3K4me3 and H3K27me3 at promoters of synthetic and proinflammatory genes in SMCs. Cumulatively, these data suggest that NETs contribute to AAA formation by promoting the synthetic and proinflammatory phenotype of SMCs via inhibiting the Hippo-YAP pathway. A better understanding of the molecular mechanisms that regulate NETs and SMC phenotype is important to provide suitable cellular targets to prevent AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Extracellular Traps , Animals , Mice , Extracellular Traps/metabolism , Aortic Aneurysm, Abdominal/metabolism , Phenotype , Neutrophils/metabolism , Mice, Knockout , Myocytes, Smooth Muscle/metabolism
12.
Transl Res ; 254: 115-127, 2023 04.
Article in English | MEDLINE | ID: mdl-36336332

ABSTRACT

Diabetic foot ulcer (DFU) is among the most frequent complications of diabetes and is associated with significant morbidity and mortality. Excessive neutrophil extracellular traps (NETs) delay wound healing in diabetic patients. Therefore, interventions targeting NET release need to be developed to effectively prevent NET-based wound healing impairment. Gasdermin D (GSDMD), a pore-forming protein acts as a central executioner of inflammatory cell death and can activate inflammasomes in neutrophils to release NETs. A precise understanding of the mechanism underlying NET-mediated delay in diabetic wound healing may be valuable in identifying potential therapeutic targets to improve clinical outcomes. In this study, we reported that neutrophils were more susceptible to NETosis in diabetic wound environments of patients with DFU. By in vitro experiments and using in vivo mouse models of diabetic wound healing (wide-type, Nlrp3-/-, Casp-1-/-, and Gsdmd-/- mice), we demonstrated that NLRP3/caspase-1/GSDMD pathway on activation controls NET release by neutrophils in diabetic wound tissue. Furthermore, inhibition of GSDMD with disulfiram or genic deletion of Gsdmd abrogated NET formation, thereby accelerating diabetic wound healing. Disulfiram could inhibit NETs-mediated diabetic foot ulcer healing impairment by suppressing the NLRP3/Caspase-1/GSDMD pathway. In summary, our findings uncover a novel therapeutic role of disulfiram in inhibiting NET formation, which is of considerable value in accelerating wound healing in patients with DFU.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Animals , Mice , Caspase 1/pharmacology , Disulfiram/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Wound Healing
13.
Talanta ; 251: 123748, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35921742

ABSTRACT

In this work, an electrochemiluminescence (ECL) biosensor with dual signal enhancement was constructed and used for DNA adenine methylation methyltransferase (Dam MTase) detection. At present of Dam MTase, restriction endonuclease (DPnI) cleaves hairpin DNA (HP) and releases the HP stem end as a single strand that can activate CRISPR/Cas12a trans-cleavage activity. Assisted by trans-cleavage, the distance between the signal quenching factor ferrocene (Fc) and the ECL signal unit increased, and the repulsion between the signal unit and the Indium Tin Oxides (ITO) electrode decreased. The above results resulted in an enhanced ECL signal. ECL intensity has a good linear relationship with the logarithm of Dam MTase concentration in the range of 5-70 U/mL with a detection limit of 23.4 mU/mL. The proposed biosensor was successfully utilized to detect of Dam MTase in serum samples.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Adenine , Biosensing Techniques/methods , DNA , DNA Methylation , DNA Restriction Enzymes , Indium , Metallocenes , Methyltransferases , Oxides , Tin
14.
Front Cardiovasc Med ; 9: 955838, 2022.
Article in English | MEDLINE | ID: mdl-35990982

ABSTRACT

Background: Various studies have highlighted the role of circular RNAs (circRNAs) as critical molecular regulators in cardiovascular diseases, but its role in abdominal aortic aneurysm (AAA) is unclear. This study explores the potential molecular mechanisms of AAA based on the circRNA-microRNA (miRNA)-mRNA competing endogenous RNA (ceRNA) network and immune cell infiltration patterns. Methods: The expression profiles of circRNAs (GSE144431) and mRNAs (GSE57691 and GSE47472) were obtained from the Gene Expression Omnibus (GEO). Then, the differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) between AAA patients and healthy control samples, and the target miRNAs of these DEmRNAs and DEcircRNAs were identified. Based on the miRNA-DEmRNAs and miRNA-DEcircRNAs pairs, the ceRNA network was constructed. Furthermore, the proportion of the 22 immune cell types in AAA patients was assessed using cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. The expressions of key genes and immune cell infiltration were validated using clinical specimens. Results: A total of 214 DEmRNAs were identified in the GSE57691 and GSE47472 datasets, and 517 DEcircRNAs were identified in the GSE144431 dataset. The ceRNA network included 19 circRNAs, 36 mRNAs, and 68 miRNAs. Two key genes, PPARG and FOXO1, were identified among the hub genes of the established protein-protein interaction between mRNAs in the ceRNA network. Moreover, seven types of immune cells were differentially expressed between AAA patients and healthy control samples. Hub genes in ceRNA, such as FOXO1, HSPA8, and RAB5C, positively correlated with resting CD4 memory T cells or M1 macrophages, or both. Conclusion: In conclusion, a ceRNA interaction axis was constructed. The composition of infiltrating immune cells was analyzed in the abdominal aorta of AAA patients and healthy control samples. This may help identify potential therapeutic targets for AAA.

15.
Int J Biol Sci ; 18(8): 3337-3357, 2022.
Article in English | MEDLINE | ID: mdl-35637949

ABSTRACT

Neutrophil extracellular traps (NETs) production is a major strategy employed by polymorphonuclear neutrophils (PMNs) to fight against microbes. NETs have been implicated in the pathogenesis of various lung injuries, although few studies have explored NETs in sepsis-associated acute lung injury (SI-ALI). Here, we demonstrate a major contribution of NETs to the pathology of sepsis-associated ALI by inducing ferroptosis of alveolar epithelial cells. Using both in vitro and in vivo studies, our findings show enhanced NETs accumulation in sepsis-associated ALI patients and mice, as well as the closely related upregulation of ferroptosis, the induction of which depends on METTL3-induced m6A modification of GPX4. Using a CLP-induced sepsis-associated ALI mouse model established with METTL3-/- versus WT mice, in addition to METTL3 knockout and overexpression in vitro, we elucidated and confirmed the critical role of ferroptosis in NETs-induced ALI. These findings support a role for NETs-induced METTL3 modification and the subsequent induction of ferroptosis in the pathogenesis of sepsis-associated ALI.


Subject(s)
Acute Lung Injury , Extracellular Traps , Ferroptosis , Sepsis , Acute Lung Injury/pathology , Alveolar Epithelial Cells , Animals , Humans , Methyltransferases , Mice , Sepsis/complications , Sepsis/pathology
16.
Sci Adv ; 8(21): eabn6928, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35622925

ABSTRACT

We here examined the potential biological function of phosphoenolpyruvate carboxykinase 1 (PCK1) in angiogenesis. shRNA- or CRISPR-Cas9-induced PCK1 depletion potently inhibited endothelial cell proliferation, migration, sprouting, and tube formation, whereas ectopic PCK1 overexpression exerted opposite activity. In HUVECs, Gαi3 expression and Akt activation were decreased following PCK1 depletion, but were augmented by ectopic PCK1 overexpression. In vivo, retinal expression of PCK1 gradually increased from postnatal day 1 (P1) to P5. The intravitreous injection of endothelial-specific PCK1 shRNA adenovirus at P1 potently inhibited the radial extension of vascular plexus at P5. Conditional endothelial knockdown of PCK1 in adult mouse retina increased vascular leakage and the number of acellular capillaries while decreasing the number of RGCs in murine retinas. In diabetic retinopathy patients, PCK1 mRNA and protein levels were up-regulated in retinal tissues. Together, PCK1 is essential for angiogenesis possibly by mediating Gαi3 expression and Akt activation.

18.
Nat Commun ; 13(1): 1017, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197446

ABSTRACT

Postoperative abdominal infectious complication (AIC) is associated with metastasis in locally advanced gastric cancer (GC) patients after radical gastrectomy. However, the underlying mechanism remains unclear. Herein, we report that neutrophil extracellular traps (NETs), the DNA meshes released by neutrophils in response to infection, could promote GC cells proliferation, invasion, migration and epithelial-mesenchymal transition dependent on TGF-ß signaling. Then we model nude mice with cecal puncture without ligation to simulate postoperative AIC and find that NETs in peripheral blood and ascites fluid facilitate GC cells extravasation and implantation into liver and peritoneum for proliferation and metastasis. Notably, TGF-ß signaling inhibitor LY 2157299 could effectively impede liver and peritoneal metastasis but not concurrently aggravate sepsis in those AIC-bearing nude mice. These findings implicate that targeting downstream effectors of NETs such as TGF-ß signaling might provide potential therapeutic prospect to reduce the risk of GC metastasis.


Subject(s)
Extracellular Traps , Stomach Neoplasms , Animals , Humans , Mice , Mice, Nude , Neoplasm Metastasis/pathology , Neutrophils/pathology , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , Transforming Growth Factor beta
19.
Cell Mol Life Sci ; 79(1): 59, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34997317

ABSTRACT

Triple-negative breast cancer (TNBC) has an aggressive biological behavior and poor outcome. Our published study showed that PAI-1 could induce the migration and metastasis of TNBC cells. However, the underlying mechanism by which PAI-1 regulates TNBC metastasis has not been addressed. Here, we demonstrated that PAI-1 is high expressed in TNBC and promotes TNBC cells tumorigenesis. Using microarray analysis of lncRNA expression profiles, we identified a lncRNA SOX2-OT, which is induced by PAI-1 and could function as an oncogenic lncRNA in TNBC. Mechanistic analysis demonstrated that SOX2-OT acts as a molecular sponge for miR-942-5p to regulate the expression of PIK3CA, ultimately leading to activating PI3K/Akt signaling pathway and promoting TNBC metastasis. Taken together, our findings suggest that SOX2-OT regulates PAI-1-induced TNBC cell metastasis through miR-942-5p/PIK3CA signaling and illustrate the great potential of developing new SOX2-OT-targeting therapy for TNBC patients.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , Plasminogen Activator Inhibitor 1/metabolism , RNA, Long Noncoding/genetics , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Class I Phosphatidylinositol 3-Kinases/biosynthesis , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasm Metastasis/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Triple Negative Breast Neoplasms/pathology
20.
Bioact Mater ; 10: 355-366, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34901552

ABSTRACT

Pericardial barrier destruction, inflammatory cell infiltration, and fibrous tissue hyperplasia, trigger adhesions after cardiac surgery. There are few anti-adhesion materials that are both functional and sutureable for pericardial reconstruction. Besides, a few studies have reported on the mechanism of preventing pericardial adhesion. Herein, a functional barrier membrane with sutureability was developed via a modified electrospinning method. It was composed of poly(l-lactide-co-caprolactone) (PLCL) nanofibers, poly(vinyl alcohol) (PVA) aerogel, and melatonin, named PPMT. The PPMT had a special microstructure manifested as a staggered arrangement of nanofibers on the surface and a layered macroporous aerogel structure in a cross-section. Besides providing the porosity and hydrophilicity obtained from PVA, the structure also had suitable mechanical properties for stitching due to the addition of PLCL nanofibers. Furthermore, it inhibited the proliferation of fibroblasts by suppressing the activation of Fas and P53, and achieved anti-inflammatory effects by affecting the activity of inflammatory cells and reducing the release of pro-inflammatory factors, such as interleukin 8 (IL-8) and tumor necrosis factor α (TNF-α). Finally, in vivo transplantation showed that it up-regulated the expression of matrix metalloproteinase-1 (MMP1) and tissue inhibitor of metalloproteinase-1 (TIMP1), and down-regulated the expression of Vinculin and transforming growth factor ß (TGF-ß) in the myocardium, thereby reducing the formation of adhesions. Collectively, these results demonstrate a great potential of PPMT membrane for practical application to anti-adhesion.

SELECTION OF CITATIONS
SEARCH DETAIL
...