Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
J Colloid Interface Sci ; 673: 49-59, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38875797

ABSTRACT

The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm-2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm-2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm-2 and a prominent durability (120 h at 50 mA cm-2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.

2.
J Colloid Interface Sci ; 662: 322-332, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38354559

ABSTRACT

The configuration of asymmetric supercapacitors (ASCs) has proven to be an effective approach to increase the energy storage properties due to the expanded working voltage resulting from the well-separated potential windows of the cathode and anode. However, carbonaceous anode materials generally suffer from relatively low capacitance, which restricts the enhancement of the energy storage performance of the full device in a traditional asymmetrical design. Herein, a rational design of all-pseudocapacitive ASCs (APASCs) using pseudocapacitive materials with a novel hierarchical nanostructure on both electrodes was developed to optimize the electrochemical properties for high-performance ASC devices. The assembled APASC employed the MnO2/PPy nanocomposites covered MnOOH nanowire arrays with core-shell hierarchical architecture as the cathode and Fe2O3/PPy hybrid nanosheets with 3D porous network-like structure as the anode. Owing to the coordinated pseudocapacitive properties and unique hierarchical nanostructures, this assembled APASC exhibited an exceptional volumetric capacitance of 4.92F cm-3 in a stable voltage window of 2 V, a maximum volumetric energy density of 2.66 mWh cm-3 at 19.72 mW cm-3, and excellent cyclic stability over 10,000 cycles (90.6 % capacitance retention), as well as remarkable flexibility and mechanical stability, providing insights for the design of flexible energy storage systems with enhanced performance.

3.
Angew Chem Int Ed Engl ; 63(11): e202317957, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38270335

ABSTRACT

Weak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO2 photoreduction. Herein, we demonstrate that the adsorption can be fine-tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni-Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock-salt phase. Such in situ phase transition empowers the Ni-Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock-salt heterojunction supported on GA stands out for an exceptional photocatalytic CO2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g-1 h-1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co2+ in octahedral site, which can effectively enhance the Co-O covalency. This synergistic effect balances the surface activation of CO2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate-limiting step.

4.
J Colloid Interface Sci ; 644: 1-9, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37088012

ABSTRACT

Multiple-principal-element alloys (MPEAs) with maximized configurational entropy show high catalytic activities for oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, the accurate relationship between their complex components (i.e., elements, phase structure, grain boundary density) and intrinsic catalytic activity is still unclear. Herein, a series of bulk MPEAs with face-centered cubic (FCC) phase structures were fabricated by the arc-melting method under an argon atmosphere. Compared to the CrCoNi and CrCoNiFeMn, the CrCoNiFe affords a higher UOR performance with the lowest overpotential of 331 mV at 10 mA·cm-2 in 1 M KOH with 0.33 M urea, due to excellent conductivity and high density of grain boundaries. The urea electrolyzer using CrCoNiFe as anode and Pt as cathode shows a low voltage of 1.622 V at 10 mA cm-2 and long-term stability of 60 h at 20 mA cm-2 (4.08% decrease). These findings offer a facile strategy for designing bulk MPEAs electrodes for energy conversion.

5.
J Hazard Mater ; 439: 129688, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36104914

ABSTRACT

The superhydrophobic fiber-based membranes with features of high separation efficiency and low energy consumption for oil-water separation remains a formidable challenge. In this paper, a robust and durable superhydrophobic cotton-derived carbon fabric (CDCF) with wodyetia bifurcate-like structure is fabricated via in situ cobalt-nickel basic carbonate (CNC) deposition and 1 H, 1 H, 2 H, 2 H-perfluorooctyltriethoxysilane (POTS) coating. The combined action of rough surface structure and low surface energy makes CDCF/CNC/POTS with superhydrophobicity/superoleophilicity, anti-wetting, and self-cleaning performance. Intriguingly, the CDCF/CNC/POTS can keep its superhydrophobicity under of the water droplet impact pressure of 781 Pa. In addition to its robust dynamic superhydrophobicity, CDCF/CNC/POTS can also maintain its non-wetting property under harsh environmental conditions such as mechanical abrasion treatment, acidic, alkaline and salt solutions, and ultraviolet radiation. Importantly, the CDCF/CNC/POTS can separate various oil-water mixtures and emulsions under gravity with ultrahigh oil-water mixtures permeate flux (∼19,126 L/m2h), high surfactant-stabilized emulsion permeate flux (∼821 L/m2h), and high separation efficiency (> 98.60 %). Moreover, remarkable recyclability endow the CDCF/CNC/POTS with promising application in treating oily wastewater. This work may benefit the low-cost mass production of cotton-based carbon fabrics for developing eco-friendly high-efficiency separators.

6.
J Colloid Interface Sci ; 623: 617-626, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35598488

ABSTRACT

Constructing heterostructure is an efficient method to provide more active sites and optimize electronic structure for improving the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performance. Herein, the 3D FeOOH@Co3O4 heterostructure was constructed using FeOOH layer (10-20 nm) coated on the surface of Co3O4 nanoneedles through the strong hydrolysis of Fe3+. The FeOOH@Co3O4 heterostructure not only retains the nanoneedle structure with open frameworks, but also improves the specific surface area and expedites the charge transfer. The FeOOH@Co3O4-240 heterostructure affords a remarkable OER performance with low overpotential of 228 mV at 10 mA·cm-2 in 1 M KOH solution. The symmetrical urea electrolyzer using FeOOH@Co3O4-240 as both anode and cathode delivers 10 mA/cm2 at 1.43 V. Density functional theory (DFT) calculations unveil that the FeOOH@Co3O4-240 heterostructure could adjust the electronic structure and strengthen the conductivity. This work offered a facile strategy for designing heterojunction catalysts in an economic way.

7.
J Hazard Mater ; 429: 128284, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35066220

ABSTRACT

The fiber-based membranes with superhydrophobic/superoleophilic features are highly desirable for oil-water separation applications. Herein, a superhydrophobic/superoleophilic basalt fiber fabric is constructed by using a general strategy of surface KMnO4 pre-oxidation, honeycomb-like cobalt hydroxide nanosheets in-situ deposition, and hydrophobization. The influence of morphology change on wettability and roughness of the fabric surface were investigated. Benefiting from the dual-scale micro-/nanostructures, the obtained composite fabric has outstanding superhydrophobicity (water contact angle > 161°) and sustains non-wettability against multifarious food liquids. Meanwhile, the fabric displays substantial superhydrophobic durability during sandpaper abrasion, tape-peeling, and bending treatment. Moreover, the fabric also demonstrates excellent anti-wetting, self-cleaning and anti-icing performance. With these properties, the fabric has outstanding separation efficiencies (> 99.31%) and recyclability for various oil-water mixtures and emulsions under gravity. Therefore, this work provides an idea for development of superhydrophobic fabrics with potential application in the rapid treatment of oily wastewater.


Subject(s)
Water , Cobalt , Hydrophobic and Hydrophilic Interactions , Hydroxides , Silicates , Water/chemistry , Wettability
8.
ACS Appl Mater Interfaces ; 13(42): 49993-50004, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34643080

ABSTRACT

Molecular self-assembly of organic molecules through noncovalent interactions is a powerful strategy for designing functional materials. Herein, we fabricated a novel free-standing Ag/g-C3N4 nanofiber (Ag/CNNF) film via a water-based molecular engineering approach followed by pyrolysis using a cyanuric acid-melamine complex as the precursor. Uniform dispersion of plasmonic Ag nanoparticles and incorporation of nitrogen vacancies were synchronously introduced into the 3D highly interconnected porous CNNF framework. The resulting Ag/CNNF film with multilevel interlayer spacing distributions significantly expedited more sufficient charge transfer dynamics not only at Schottky junction sites but also throughout hierarchical CN by exciton dissociation. Benefiting from the synergistic enhancement in visible light harvesting capability and steered charge carrier transfer in a longitudinal direction, the Ag/CNNF film presented remarkably boosted photocatalytic ability both for hydrogen production and tetracycline degradation. The optimal Ag/CNNF-2 film exhibited a prominent photocatalytic hydrogen evolution rate of 1240 µmol g-1 h-1 without the Pt co-catalyst under visible light illumination, which was 10.3 times as high as that of bulk g-C3N4. Significantly, 1D Ag/g-C3N4 nanofibers self-assembled into an ordered and macroscopic film, which was more favorable in practical applications owing to good reusability and high processability. This work paved the way for the facile preparation of supramolecular self-assembled CN-based film photocatalysts.

9.
Sci Total Environ ; 758: 143660, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33248768

ABSTRACT

Leakage accidents often occur during the production, transportation, and use of petroleum products, which is a common and serious environmental issue. It is of great significance and challenge to develop efficient materials for oil-water separation. This article introduces a simple and feasible method to prepare high-performance 3D graphene foam (GF) oil-absorbing material. Gold nanoparticles (Au NPs) are loaded on the surface of graphene foam by ion sputtering and then modified with 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT). The prepared graphene sponge is porous with a large specific surface area and excellent water repellency (water contact angle exceeding 150°). The superhydrophobicity of the materials is due to the interaction between the rough structure of gold nanoparticles and the reduction of surface energy by PFDT. These outstanding properties make the functionalized graphene foam have excellent oil absorption capacity, which can even be as high as 25.8 g/g, and it can still maintain high separation performance after 10 cycles of recycling. It is worth noting that the preparation of the material is simple and reusable. Therefore, the prepared graphene foam has the potential as a promising absorbent for oil spill purification.

10.
J Hazard Mater ; 408: 124408, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33168311

ABSTRACT

Given complexity and diversity of oily wastewater, developing highly efficient separation materials through green and facile strategy are urgently needed. Herein, a smart strategy is demonstrated to transform raw cotton into uniform cellulose sponge for separation oil-in-water emulsion. The raw cotton is directly treated in zinc chloride aqueous solutions through a controllable dissolution process. After regeneration without any further chemical modification and freeze drying, the evolved cellulose sponge, which is composed of partially dissolved cotton fiber and exfoliated regenerated cellulose, exhibits interesting three-dimensional (3D) interconnected hierarchical porous network structure and stable wettability of superoleophobicity (θoil>150º) under water. Cellulose sponge has excellent underwater superoleophobicity and antifouling property due to the natural hydrophilicity of cellulose. Based on the beneficial 3D hierarchical structure and superwettability, the cellulose sponge can separate highly emulsified oil-in-water emulsions with efficiency up to 99.2% solely under the driving of gravity. Our strategy provides a generic way to convert cellulose-based materials into cellulose porous materials with excellent permeability, separation efficiency, antifouling, and reusability property for oil/water emulsions separation. This economical, environmentally friendly and functional cellulose sponge not only allows natural cotton resources to be used rationally with high value-added, but also effectively solves the problems of oily wastewater.


Subject(s)
Cellulose , Oils , Emulsions , Hydrophobic and Hydrophilic Interactions , Water
11.
ACS Appl Mater Interfaces ; 12(40): 44952-44960, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32916046

ABSTRACT

In this study, we report the pure compressed carbon foam (CCF) that offers a brand-new solution for separating emulsified oil/water mixtures. The CCF was fabricated by low-temperature carbonization of three-dimensional commercial melamine foam, which was then compressed without any further chemical modification. The CCF has amphiphilicity in air, underwater superoleophobicity, and underoil superhydrophobicity; therefore, it has been proved to be successfully utilized in highly emulsified oil-in-water and water-in-oil emulsions with excellent separation efficiencies, and it merely relies on gravity in the absence of external force. The CCF can also maintain its superwetting property under different harsh conditions, including strong acid, alkali, and salt solution conditions; this property offers great opportunities for widespread applications. Importantly, the CCF exhibits excellent permeability, separation efficiency, antifouling, and reusability performance. This novel CCF material has great potential application in handling oily wastewater owing to its low-cost raw materials, easily scaled-up preparation process, excellent antifouling property, and high separation capacity of materials.

12.
RSC Adv ; 9(15): 8569-8574, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-35518690

ABSTRACT

Three-dimensional graphene based materials with superhydrophobic/superoleophilic attributes are highly desirable for water treatment. The graphene aerogel (GA) was prepared by hydrothermal reaction of the graphene oxide (GO) solution in the presence of dopamine followed by freeze-drying. The subsequent surface modification of GA using fluoroalkylsilane occurred by a vapor-liquid deposition process. The superhydrophobic graphene aerogel (SGA) fabricated from GA exhibits superhydrophobicity and superoleophilicity with the water contact angle of 156.5° and the oil contact angle of 0°. With this property, SGA could selectively adsorb various types of oils/organic solvents from the oil-water mixture. Moreover, the SGA possesses excellent low bulk density (9.6 mg cm-3), high absorption capacity (110-230 fold weight gain), and superior adsorption recyclability. With all these desirable features, the SGA is a promising candidate for oil-polluted water remediation.

13.
J Colloid Interface Sci ; 512: 647-656, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29102911

ABSTRACT

A series of three-dimensional (3-D) TiO2/graphene (TiO2/GR) hybrids with different TiO2 weight ratios were prepared using a self-assembly approach followed by the gaseous reduction in a hydrothermal system. The method was based on the electrostatic attraction between the positively charged titanium glycolate precursor and negatively charged graphene oxide in an aqueous medium without any surfactant or template. The structure, morphology, physical and optical properties of the as-synthesized hybrids were characterized, and the results showed that TiO2 spheres were homogeneously confined within the 3-D networks of graphene, and acted as pillars to effectively separate the graphene sheets from each other. By optimizing the ratio of TiO2 in the hybrids, the material was identified as an excellent photocatalyst to remove organic compound in water with high degradation efficiency. Additionally, TiO2/GR hybrids delivered high specific capacity, enhanced rate capability and excellent cyclic stability when used as a freestanding electrode for lithium ion batteries.

14.
J Colloid Interface Sci ; 508: 254-262, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28843104

ABSTRACT

Surface free energy and roughness are two predominant factors governing the hydrophilicity/hydrophobicity of materials. This paper reported the surface roughness induced hydrophobicity of graphene foam by incorporating silica nanoparticles onto graphene sheet via a sol-gel method and subsequent modification using silane. Various techniques were employed to characterize the morphology, composition and surface properties of sample. The results showed that the as-prepared graphene foam exhibited a superhydrophobic surface with a high water contact angle of 156°, as well as superoleophilicity with excellent adsorption capacities for a variety of oil compounds. Benefiting from the integration of enhancement on the surface roughness and reduction on the surface free energy of material, the graphene foam developed in this study had the capability to effectively separate oil-water mixture with excellent stability and recyclability.

15.
Nanoscale ; 6(21): 13154-62, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25251546

ABSTRACT

Single-crystal palladium nanoparticles (NPs) with controllable morphology were synthesized on the surface of reduced graphene oxide (RGO) by a novel procedure, namely reducing palladium acetylacetonate [Pd(acac)2] with the N-methylpyrrolidone (NMP) solvent in the presence of poly(vinylpyrrolidone) (PVP). The resulting Pd nanocrystals (8 nm in diameter) were uniformly distributed on the RGO. A possible formation mechanism is discussed. The electrocatalytic performance of Pd nanocrystal/RGO catalysts during formic acid oxidation was investigated, which revealed that the cubic Pd/RGO catalyst performed significantly better than the spherical Pd/RGO catalyst. The shape of Pd nanocrystals on the surface of graphene nanosheets can be easily controlled via tuning the synthesis parameters, resulting in tunable catalytic properties. Moreover, this method can be easily extended to fabricate other noble metal nanostructures.

16.
Dalton Trans ; 43(33): 12743-53, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25011616

ABSTRACT

This paper reports the synthesis of novel photocatalysts consisting of TiO2 nanoparticles and glass fibres (GF) using a two-step process. The method involves the hydrolysis of titanium tetrachloride in the presence of GF and a following hydrothermal process under alkaline conditions. Various techniques are employed to characterize the morphology, structure and crystallinity of TiO2 on the fibre surface. The results show that depending on the experiment setups, TiO2 nanoparticles exhibit spherical or flake-like morphology, forming characteristic hierarchical structures along with flexible GF. Flake-like TiO2/GF exhibits much enhanced photocatalytic activity thanks to the large surface area and the hetero-junction of anatase and TiO2-B phases observed in its structure. An interesting observation is that the alkali treatment of GF leads to the formation of porous structures on the fibre surface, facilitating the adsorption-concentration-promoted photocatalytic process. The removal ratio of the organic dye by employing TiO2/GF remains more than 80% after six cyclic runs, showing the reusability of photocatalysts in real application. The novelty of this work lies in the synergy arising from materials with unique morphologies, structures and availabilities as well as capabilities in separating photogenerated electron-hole pairs, which have not been specifically considered previously in photocatalytic semiconductors.

17.
J Colloid Interface Sci ; 430: 337-44, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24974246

ABSTRACT

This paper reported the preparation of magnetic graphene foam loaded with magnetite (Fe3O4) nanoparticles and its application for the adsorption of oil and organic solvents. The foam with porous and hierarchical structures was derived from graphene oxide film reduced by gaseous reduction in a hydrothermal system. Drastically different morphologies of Fe3O4 nanoparticles with nanosheet arrays or cubic structures were observed on graphene foam by controlling the reduction degree of graphene oxide under mild conditions. Benefiting from the integration of porous structures and magnetic properties, the graphene foam manifests outstanding oil adsorption capacity, high restoration for absorbates as well as excellent recyclability and stability under cyclic operations. The simple and effective strategy for the preparation of graphene foams developed in this study may offer a new alternative for scale-up production of graphene materials used for the cleanup of oil spills.

18.
Sci Rep ; 4: 4501, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24675779

ABSTRACT

To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

19.
Nanoscale ; 3(8): 3277-84, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21713273

ABSTRACT

A novel electrode material based on graphene oxide (GO)-polypyrrole (PPy) composites was synthesized by in situ chemical oxidation polymerization. Palladium nanoparticles (NPs) with a diameter of 4.0 nm were loaded on the reduced graphene oxide(RGO)-PPy composites by a microwave-assisted polyol process. Microstructure analysis showed that a layer of coated PPy film with monodisperse Pd NPs is present on the RGO surface. The Pd/RGO-PPy catalysts exhibit excellent catalytic activity and stability for formic acid electro-oxidation when the weight feed ratio of GO to pyrrole monomer is 2:1. The superior performance of Pd/RGO-PPy catalysts may arise from utilization of heterogeneous nucleation sites for NPs and the greatly increased electronic conductivity of the supports.


Subject(s)
Electrochemical Techniques/instrumentation , Formates/chemistry , Graphite/chemistry , Nanostructures/chemistry , Polymers/chemistry , Pyrroles/chemistry , Microscopy, Electron, Transmission , Nanoparticles , Oxidation-Reduction , Palladium/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Sulfuric Acids/chemistry , Thermogravimetry , X-Ray Diffraction
20.
Nanoscale ; 3(2): 572-4, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21076732

ABSTRACT

Nanocrystalline Li4Ti5O12 grown on conducting graphene nanosheets (GNS) with good crystallinity was investigated as an advanced lithium-ion battery anode material for potential large-scale applications. This hybrid anode nanostructure material showed ultrahigh rate capability and good cycling properties at high rates.


Subject(s)
Graphite/chemistry , Lithium/chemistry , Nanostructures/chemistry , Oxides/chemistry , Titanium/chemistry , Electric Power Supplies , Electrodes , Nanostructures/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL