Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
J Environ Manage ; 367: 121970, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106792

ABSTRACT

Photocatalysis has been proven to be an excellent technology for treating antibiotic wastewater, but the impact of each active species involved in the process on antibiotic degradation is still unclear. Therefore, the S-scheme heterojunction photocatalyst Ti3C2/g-C3N4/TiO2 was successfully synthesized using melamine and Ti3C2 as precursors by a one-step calcination method using mechanical stirring and ultrasound assistance. Its formation mechanism was studied in detail through multiple characterizations and work function calculations. The heterojunction photocatalyst not only enabled it to retain active species with strong oxidation and reduction abilities, but also significantly promoted the separation and transfer of photo-generated carriers, exhibiting an excellent degradation efficiency of 94.19 % for tetracycline (TC) within 120 min. Importantly, the priority attack sites, degradation pathways, degradation intermediates and their ecological toxicity of TC under the action of each single active species (·O2-, h+, ·OH) were first positively explored and evaluated through design experiments, Fukui function theory calculations, HPLC-MS, Escherichia coli toxicity experiments, and ECOSAR program. The results indicated that the preferred attack sites of ·O2- on TC were O20, C7, C11, O21, and N25 atoms with high f+ value. The toxicity of intermediates produced by ·O2- was also lower than those produced by h+ and ·OH.


Subject(s)
Tetracycline , Tetracycline/chemistry , Tetracycline/toxicity , Catalysis , Titanium/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Wastewater/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity
2.
Article in English | MEDLINE | ID: mdl-38978507

ABSTRACT

In hypertrophic scars, the differentiation and migration of fibroblasts are influenced by the extracellular matrix microenvironment, which includes factors such as stiffness, restraint, and tensile force. These mechanical stresses incite alterations in cell behavior, accompanied by cytoskeletal protein reorganization. However, the role of nucleo-skeletal proteins in this context remains underexplored. In this study, we use a polyacrylamide hydrogel (PAA) to simulate the mechanical stress experienced by cells in scar tissue and investigate the impact of Emerin on cell behavior. We utilize atomic force microscopy (AFM) and RNA interference technology to analyze cell differentiation, migration, and stiffness. Our findings reveal that rigid substrates and cellular restriction elevate Emerin expression and diminish differentiation. Conversely, reducing Emerin expression leads to attenuated cell differentiation, where stiffness and constraining factors exert no notable influence. Furthermore, a softening of cells and an enhanced migration rate are also markedly observed. These observations indicate that variations in nuclear skeletal proteins, prompted by diverse matrix microenvironments, play a pivotal role in the pathogenesis of hypertrophic scars (HSs). This research offers novel insights and a reference point for understanding scar fibrosis formation mechanisms and preventing fibrosis.

3.
J Nanobiotechnology ; 22(1): 442, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068444

ABSTRACT

BACKGROUND: PD-1/PD-L1 blockade has become a powerful method to treat malignant tumors. However, a large proportion of patients still do not benefit from this treatment, due to low tumor immunogenicity and low tumor penetration of the agents. Recently, neutrophil elastase has been shown to induce robust tumor immunogenicity, while the insufficient enzyme activity at the tumor site restricted its anti-tumor application. Here, we designed polyethyleneimine-modified neutrophil elastase (PEI-elastase) loaded with PD-L1small interfering RNA (PD-L1 siRNA) for improving enzymatic activity and delivering siRNA to tumor, which was expected to solve the above-mentioned problems. RESULTS: We first demonstrated that PEI-elastase possessed high enzymatic activity, which was also identified as an excellent gene-delivery material. Then, we synthesized anti-tumor lipopolymer (P-E/S Lip) by encapsulating PEI-elastase and PD-L1siRNA with pH-responsive anionic liposomes. The P-E/S Lip could be rapidly cleaved in tumor acidic environment, leading to exposure of the PEI-elastase/PD-L1 siRNA. Consequently, PEI-elastase induced powerful tumor immunogenicity upon direct tumor killing with minimal toxicity to normal cells. In parallel, PEI-elastase delivered PD-L1siRNA into the tumor and reduced PD-L1 expression. Orthotopic tumor administration of P-E/S Lip not only attenuated primary tumor growth, but also produced systemic anti-tumor immune response to inhibit growth of distant tumors and metastasis. Moreover, intravenous administration of P-E/S Lip into mice bearing subcutaneous tumors leaded to an effective inhibition of established B16-F10 tumor and 4T1 tumor, with histological analyses indicating an absence of detectable toxicity. CONCLUSIONS: In our study, a protease-based nanoplatform was used to cooperatively provoke robust tumor immunogenicity and down-regulate PD-L1 expression, which exhibited great potential as a combination therapy for precisely treating solid tumors.


Subject(s)
B7-H1 Antigen , Immunotherapy , Polyethyleneimine , RNA, Small Interfering , Animals , Polyethyleneimine/chemistry , RNA, Small Interfering/chemistry , B7-H1 Antigen/metabolism , Mice , Immunotherapy/methods , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Liposomes/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Mice, Inbred C57BL , Gene Silencing
4.
Ecotoxicology ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995498

ABSTRACT

Mercury (Hg) is a persistent soil pollutant, and its toxicity can be evaluated using soil enzyme indicators. However, a thorough understanding of how the enzyme resists and remains resilient to Hg stress is essential, as it significantly impacts the accuracy of toxicity assessments. Therefore, it is worthwhile to understand the functional stability of urease in soil under Hg pollution. This study compares the effects of Hg at different concentrations and exposure times on soil urease. Results indicate that soil urease activity was enhanced in the first two hours under low levels of Hg pollution, decreased after six hours of acute Hg pollution, and reached its maximum reduction in 24 hours. The urease in fluvo-aquic soil, with higher soil organic matter showed higher resistance to Hg acute pollution than that in red soil. Over a longer aging process, soil urease activity gradually recovered with time. Hormesis effects were observed in red soil under high Hg stress after 30 days, showing the strong resilience of urease enzyme function to Hg pollution. The ecological dose, ED10, (the Hg concentration causing a 10% reduction in soil urease activity) ranged from 0.09 to 0.59 mg kg-1 under short-term exposure, and was lower than that under a longer aging process (0.28 to 2.71 mg kg-1). Further, aging reduced the Hg ecotoxicity due to decreased Hg availability and the resilience of soil urease activity. This indicates that the risk of Hg pollution estimated by soil urease as an indicator depends on exposure time and enzyme stability. These factors need consideration in heavy metal pollution assessments using soil enzymes.

5.
Anal Biochem ; 694: 115613, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002744

ABSTRACT

RNA G4, as an integral branch of G4 structure, possesses distinct interactions with ligands compared to the common DNA G4, thus the investigation of RNA G4/ligand interactions might be considered as a fresh breakthrough to improve the biosensing performance of G4/ligand system. In this study, we comparatively explored the structural and functional mechanisms of RNA G4 and DNA G4 in the interaction with ligands, hemin and thioflavin T (ThT), utilizing the classical PS2.M sequence as a model. We found that although the catalytic performance of RNA G4/hemin system was lower than DNA G4/hemin, RNA G4/ThT fluorescence system exhibited a significant improvement (2∼3-fold) compared to DNA G4/ThT, and adenine modification could further enhance the signaling. Further, by exploring the interaction between RNA G4 and ThT, we deemed that RNA G4 and ThT were stacked in a bimolecular mode compared to single-molecule binding of DNA G4/ThT, thus more strongly limiting the structural spin in ThT excited state. Further, RNA G4/ThT displayed higher environmental tolerance and lower ion dependence than DNA G4/ThT. Finally, we employed RNA G4/ThT as a highly sensitive label-free fluorescent signal output system for in situ imaging of isoforms BCR-ABL e13a2 and e14a2. Overall, this study successfully screened a high-performance RNA G4 biosensing system through systematic RNA G4/ligands interaction studies, which was expected to provide a promising reference for subsequent G4/ligand research.

6.
Neuropsychologia ; 201: 108936, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38851314

ABSTRACT

It is not clear whether the brain can detect changes in native and non-native speech sounds in both unattended and attended conditions, but this information would be important to understand the nature of potential native language advantage in speech perception. We recorded event-related potentials (ERPs) for changes in duration and in Chinese lexical tone in a repeated vowel /a/ in native speakers of Finnish and Chinese in passive and active listening conditions. ERP amplitudes reflecting deviance detection (mismatch negativity; MMN and N2b) and attentional shifts towards changes in speech sounds (P3a and P3b) were investigated. In the passive listening condition, duration changes elicited increased amplitude in the MMN latency window for both standard and deviant sounds in the Finnish speakers compared to the Chinese speakers, but no group differences were observed for P3a. In passive listening to lexical tones, P3a was increased in amplitude for both standard and deviant stimuli in Chinese speakers compared to Finnish speakers, but the groups did not differ in MMN. In active listening, both tone and duration changes elicited N2b and P3b, but the groups differed only in pattern of results for the deviant type. The results thus suggest an overall increased sensitivity to native speech sounds, especially in passive listening, while the mechanisms of change detection and attentional shifting seem to work well for both native and non-native speech sounds in the attentive mode.


Subject(s)
Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory , Speech Perception , Humans , Male , Female , Speech Perception/physiology , Young Adult , Adult , Evoked Potentials, Auditory/physiology , Brain/physiology , Language , Attention/physiology , Phonetics , Reaction Time/physiology , Evoked Potentials/physiology , Brain Mapping
7.
Talanta ; 277: 126436, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38901192

ABSTRACT

Cancer cells have a high abundance of hypochlorite compared to normal cells, which can be used as the biomarker for imaging cancer cells and tumor. Developing the tumor-targeting fluorescent probe suitable for imaging hypochlorite in vivo is urgently demanded. In this article, based on xanthene dye with a two-photon excited far-red to NIR emission, a tumor-targeting two-photon fluorescent probe (Biotin-HClO) for imaging basal hypochlorite in cancer cells and tumor was developed. For ClO-, Biotin-HClO (20.0 µM) has a linear response range from 15.0 × 10-8 to 1.1 × 10-5 M with a high selectivity and a high sensitivity, a good detection limit of 50 nM and a 550-fold fluorescence enhancement with high signal-to-noise ratio (20 mM PBS buffer solution with 50 % DMF; pH = 7.4; λex = 605 nm; λem = 635 nm). Morover, Biotin-HClO exhibited excellent performance in monitoring exogenous and endogenous ClO- in cells, and has an outstanding tumor-targeting ability. Subsequently, Biotin-HClO has been applied for imaging ClO- in 4T1 tumor tissue to distinguish from normal tissue. Furthermore, Biotin-HClO was successfully employed for high-contrast imaging 4T1 tumor in mouse based on its tumor-targeting ability. All these results proved that Biotin-HClO is a useful analytical tool to detect ClO- and image tumor in vivo.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Photons , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Hypochlorous Acid/analysis , Animals , Humans , Mice , Optical Imaging , Biotin/chemistry , Female , Mice, Inbred BALB C , Cell Line, Tumor , Infrared Rays
8.
Water Res ; 257: 121693, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728785

ABSTRACT

Cyanobacterial harmful algal blooms (cyanoHABs) are becoming increasingly common in aquatic ecosystems worldwide. However, their heterogeneous distributions make it difficult to accurately estimate the total algae biomass and forecast the occurrence of surface cyanoHABs by using traditional monitoring methods. Although various optical instruments and remote sensing methods have been employed to monitor the dynamics of cyanoHABs at the water surface (i.e., bloom area, chlorophyll a), there is no effective in-situ methodology to monitor the dynamic change of cell density and integrated biovolume of algae throughout the water column. In this study, we propose a quantitative protocol for simultaneously measurements of multiple indicators (i.e., biovolume concentration, size distribution, cell density, and column-integrated biovolume) of cyanoHABs in water bodies by using the laser in-situ scattering and transmissometry (LISST) instrument. The accuracy of measurements of the biovolume and colony size of algae was evaluated and exceeded 95% when the water bloom was dominated by cyanobacteria. Furthermore, the cell density of cyanobacteria was well estimated based on total biovolume and mean cell volume measured by the instrument. Therefore, this methodology has the potential to be used for broader applications, not only to monitor the spatial and temporal distribution of algal biovolume concentration but also monitor the vertical distribution of cell density, biomass and their relationship with size distribution patterns. This provides new technical means for the monitoring and analysis of algae migration and early warning of the formation of cyanoHABs in lakes and reservoirs.


Subject(s)
Cyanobacteria , Environmental Monitoring , Environmental Monitoring/methods , Harmful Algal Bloom , Biomass , Eutrophication , Chlorophyll/analysis
9.
Antioxidants (Basel) ; 13(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38671845

ABSTRACT

Ascorbic acid (AsA), also known as vitamin C, is a well-known antioxidant found in living entities that plays an essential role in growth and development, as well as in defensive mechanisms. GDP-L-galactose phosphorylase (GGP) is a candidate gene regulating AsA biosynthesis at the translational and transcriptional levels in plants. In the current study, we conducted genome-wide bioinformatic analysis and pinpointed a single AsA synthesis rate-limiting enzyme gene in melon (CmGGP1). The protein prediction analysis depicted that the CmGGP1 protein does not have a signaling peptide or transmembrane structure and mainly functions in the chloroplast or nucleus. The constructed phylogenetic tree analysis in multispecies showed that the CmGGP1 protein has a highly conserved motif in cucurbit crops. The structural variation analysis of the CmGGP1 gene in different domesticated melon germplasms showed a single non-synonymous type-base mutation and indicated that this gene was selected by domestication during evolution. Wild-type (WT) and landrace (LDR) germplasms of melon depicted close relationships to each other, and improved-type (IMP) varieties showed modern domestication selection. The endogenous quantification of AsA content in both the young and old leaves of nine melon varieties exhibited the major differentiations for AsA synthesis and metabolism. The real-time quantitative polymerase chain reaction (qRT-PCR) analysis of gene co-expression showed that AsA biosynthesis in leaves was greater than AsA metabolic consumption, and four putative interactive genes (MELO3C025552.2, MELO3C007440.2, MELO3C023324.2, and MELO3C018576.2) associated with the CmGGP1 gene were revealed. Meanwhile, the CmGGP1 gene expression pattern was noticed to be up-regulated to varying degrees in different acclimated melons. We believe that the obtained results would provide useful insights for an in-depth genetic understanding of the AsA biosynthesis mechanism, aimed at the development of improving crop plants for melon.

10.
Front Plant Sci ; 15: 1367680, 2024.
Article in English | MEDLINE | ID: mdl-38633455

ABSTRACT

Increasing occurrences of Microcystis surface scum have been observed in the context of global climate change and the increase in anthropogenic pollution, causing deteriorating water quality in aquatic ecosystems. Previous studies on scum formation mainly focus on the buoyancy-driven floating process of larger Microcystis colonies, neglecting other potential mechanisms. To study the non-buoyancy-driven rapid flotation of Microcystis, we here investigate the floating processes of two strains of single-cell species (Microcystis aeruginosa and Microcystis wesenbergii), which are typically buoyant, under light conditions (150 µmol photons s-1 m-2). Our results showed that M. wesenbergii exhibited fast upward migration and formed surface scum within 4 hours, while M. aeruginosa did not form visible scum throughout the experiments. To further explore the underlying mechanism of these processes, we compared the dissolved oxygen (DO), extracellular polymeric substance (EPS) content, and colony size of Microcystis in different treatments. We found supersaturated DO and the formation of micro-bubbles (50-200 µm in diameter) in M. wesenbergii treatments. M. aeruginosa produces bubbles in small quantities and small sizes. Additionally, M. wesenbergii produced more EPS and tended to aggregate into larger colonies. M. wesenbergii had much more derived-soluble extracellular proteins and polysaccharides compared to M. aeruginosa. At the same time, M. wesenbergii contains abundant functional groups, which was beneficial to the formation of agglomerates. The surface scum observed in M. wesenbergii is likely due to micro-bubbles attaching to the surface of cell aggregates or becoming trapped within the colony. Our study reveals a species-specific mechanism for the rapid floatation of Microcystis, providing novel insights into surface scum formation as well as succession of cyanobacterial species.

11.
J Clin Ultrasound ; 52(6): 753-762, 2024.
Article in English | MEDLINE | ID: mdl-38676550

ABSTRACT

PURPOSE: Uterine fibroids (UF) are the most frequent tumors in ladies and can pose an enormous threat to complications, such as miscarriage. The accuracy of prognosis may also be affected by way of doctor inexperience and fatigue, underscoring the want for automatic classification fashions that can analyze UF from a giant wide variety of images. METHODS: A hybrid model has been proposed that combines the MobileNetV2 community and deep convolutional generative adversarial networks (DCGAN) into useful resources for medical practitioners in figuring out UF and evaluating its characteristics. Real-time automated classification of UF can aid in diagnosing the circumstance and minimizing subjective errors. The DCGAN science is utilized for superior statistics augmentation to create first-rate UF images, which are labeled into UF and non-uterine-fibroid (NUF) classes. The MobileNetV2 model then precisely classifies the photos based totally on this data. RESULTS: The overall performance of the hybrid model contrasts with different models. The hybrid model achieves a real-time classification velocity of 40 frames per second (FPS), an accuracy of 97.45%, and an F1 rating of 0.9741. CONCLUSION: By using this deep learning hybrid approach, we address the shortcomings of the current classification methods of uterine fibroid.


Subject(s)
Deep Learning , Leiomyoma , Ultrasonography , Uterine Neoplasms , Humans , Leiomyoma/diagnostic imaging , Female , Uterine Neoplasms/diagnostic imaging , Ultrasonography/methods , Uterus/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
12.
Article in English | MEDLINE | ID: mdl-38568328

ABSTRACT

Anaerobic fermentation of excess sludge (ES) for hydrogen production is a crucial strategy for resource utilization and environmentally friendly treatment. However, the low hydrolysis efficiency of ES and the depletion of produced hydrogen have become the limiting factors for low hydrogen yield. This study innovatively applied the bio-based surfactant alkyl polyglucoside (APG) to enhance the efficiency of dark fermentation for hydrogen production from ES. When the APG content was 100 mg/g (calculated based on total suspended solids), the maximum hydrogen production reached 17.8 mL/g VSS, approximately 3.7 times that in the control group. Mechanistic analysis revealed that APG promoted the release of organic matter from ES. APG also facilitated the release of soluble protein and soluble polysaccharide, increasing the organic matter reduction rate to 34.8%, significantly higher than other groups. APG enhanced the accumulation of volatile fatty acids and promoted the proportion of small molecular carboxylic acids. Enzyme activity analysis revealed that APG promoted the activity of hydrolytic enzymes but inhibited the activity of hydrogen-consuming enzymes. The research results provide a green and environmentally friendly strategy for the efficient resource utilization of ES.

13.
J Colloid Interface Sci ; 665: 41-59, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38513407

ABSTRACT

In the work, Bi2WO6/C-TiO2 photocatalyst was successfully synthesized for the first time by loading narrow bandgap semiconductor Bi2WO6 on MOF-derived carboxyl modified TiO2. The phase structure, morphology, photoelectric properties, surface chemical states and photocatalytic performance of the prepared photocatalysts were systematically investigated using various characterization tools. The degradation efficiency of oxytetracycline by 6BT Z-scheme heterojunction photocatalyst under visible light could reach 93.6 % within 100 min, which was related to the high light harvesting and effective separation and transfer of photo-generated carriers. Furthermore, the effects of various environmental factors in actual wastewater were further investigated, and the results showed that 6BT exhibited good adaptability, durability and resistance to interference. Unlike most works, the degradation system with a different single active species were designed and constructed based on their formation mechanism. In addition, for the first time, a positive study was conducted on the priority attack sites, intermediate products, and degradation pathways for the photocatalytic degradation of oxytetracycline by a single active species through HPLC-MS and Fukui index calculations. The toxicity changes of intermediate products produced in three different single active species oxidation systems were evaluated using toxicity assessment software tools (T.E.S.T.), Escherichia coli growth experiments, and wheat growth experiments. Among them, the intermediate products formed through O2- oxidation had the lowest toxicity and the main active sites it attacked were the 20C, 38O, 18C, 41O, and 55O atoms with high f+ values in the oxytetracycline molecular structure. This work provided the insight into the role of each active species in the degradation of antibiotics and offered new ideas for the design and synthesis of efficient and eco-friendly photocatalysts.


Subject(s)
Oxytetracycline , Oxytetracycline/toxicity , Anti-Bacterial Agents/pharmacology , Escherichia coli , Light , Liquid Chromatography-Mass Spectrometry
14.
Angew Chem Int Ed Engl ; 63(22): e202403972, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38491769

ABSTRACT

Recycling of carbon fiber-reinforced polymer composites (CFRCs) based on thermosetting plastics is difficult. In the present study, high-performance CFRCs are fabricated through complexation of aromatic pinacol-cross-linked polyurethane (PU-AP) thermosets with carbon fiber (CF) cloths. PU-AP thermosets exhibit a breaking strength of 95.5 MPa and toughness of 473.6 MJ m-3 and contain abundant hydrogen-bonding groups, which can have strong adhesion with CFs. Because of the high interfacial adhesion between CF cloths and PU-AP thermosets and high toughness of PU-AP thermosets, CF/PU-AP composites possess a high tensile strength of >870 MPa. Upon heating in N,N-dimethylacetamide (DMAc) at 100 °C, the aromatic pinacols in the CF/PU-AP composites can be cleaved, generating non-destructive CF cloths and linear polymers that can be converted to high-performance elastomers. The elastomers are mechanically robust, healable, reprocessable, and damage-resistant with an extremely high tensile strength of 74.2 MPa and fracture energy of 149.6 kJ m-2. As a result, dissociation of CF/PU-AP composites enables the recovery of reusable CF cloths and high-performance elastomers, thus realizing the upcycling of CF/PU-AP composites.

15.
Ophthalmic Res ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38555640

ABSTRACT

INTRODUCTION: This study aimed to investigate the relationship between age of myopia onset and high myopia and to explore if age of onset mediated the associations of high myopia with parental myopia and time spent on electronics. METHODS: This cross-sectional study enrolled 1118 myopic patients aged 18 to 40. Information was obtained via a detailed questionnaire. Multivariable logistic regression and linear regression models were utilized to assess age of onset in relation to high myopia and spherical equivalent refractive error, respectively. Structural equation models examined the mediated effect of onset age on the association between parental myopia, time spent on electronics and high myopia. RESULTS: An early age at myopia onset was negatively correlated with spherical equivalent refractive power. Subjects who developed myopia before the age of 12 were more likely to suffer from high myopia than those who developed myopia after the age of 15. Age of myopia onset was the strongest predictor of high myopia, with an area under the curve (AUC) in Receiver Operator Characteristic (ROC) analysis of 0.80. Additionally, age of myopia onset served as a mediator in the relationships between parental myopia, electronic device usage duration, and the onset of high myopia in adulthood. CONCLUSIONS: Age of myopia onset might be the single best predictor for high myopia, and age at onset appeared to mediate the associations of high myopia with parental myopia and time spent on electronics.

16.
Graefes Arch Clin Exp Ophthalmol ; 262(8): 2633-2642, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38530452

ABSTRACT

PURPOSE: To investigate the alterations in extraocular muscles (EOMs) by magnetic resonance imaging (MRI) among patients diagnosed with Duane retraction yndrome (DRS) and congenital fibrosis of the extraocular muscles (CFEOM), who present with various cranial nerve anomalies in an attempt to enhance the clinical diagnostic process. METHODS: A case-control study was conducted to evaluate 27 patients with DRS and 14 patients with CFEOM. All patients underwent MRI scans of the brainstem and orbital examination. Neurodevelopmental assessments were conducted through MRI, and maximum cross-sectional area and volumes of EOMs were obtained. Three types of models were constructed using machine learning decision tree algorithms based on EOMs to predict disease diagnosis, cranial nerve abnormalities, and clinical subtypes. RESULTS: Patients with bilateral CN VI abnormalities had smaller volumes of LR, MR, and IR muscles compared to those with unilateral involvement (P < 0.05). Similarly, patients with CFEOM and unilateral third cranial nerve abnormalities had a smaller maximum cross-section of the affected eye's SR compared to the contralateral eye (P < 0.05). In patients with both CN III and CN VI abnormalities, the volume of SR was smaller than in patients with CN III abnormalities alone (P < 0.05). The prediction model using EOMs volume showed a diagnostic precision of 82.5% for clinical cases and 60.1% for predicting cranial nerve abnormalities. Nonetheless, the precision for identifying clinical subtypes was relatively modest, at only 41.7%. CONCLUSION: The distinctive volumetric alterations in EOMs among individuals exhibiting distinct cranial nerve anomalies associated with DRS or CFEOM provide valuable diagnostic insights into to Congenital Cranial Neurodevelopmental Disorders (CCDDs). MRI analysis of EOMs should thus be regarded as a crucial diagnostic modality.


Subject(s)
Duane Retraction Syndrome , Fibrosis , Magnetic Resonance Imaging , Oculomotor Muscles , Humans , Magnetic Resonance Imaging/methods , Oculomotor Muscles/diagnostic imaging , Oculomotor Muscles/pathology , Duane Retraction Syndrome/diagnosis , Male , Female , Fibrosis/diagnosis , Child , Adolescent , Child, Preschool , Young Adult , Adult , Ophthalmoplegia/diagnosis , Case-Control Studies , Cranial Nerves/abnormalities , Cranial Nerve Diseases/diagnosis , Eye Diseases, Hereditary/diagnosis , Retrospective Studies , Congenital Cranial Dysinnervation Disorders
17.
Integr Cancer Ther ; 23: 15347354241237234, 2024.
Article in English | MEDLINE | ID: mdl-38469799

ABSTRACT

OBJECTIVE: The purpose of this overview is to assess systematic reviews (SRs)/ meta-analyses (MAs) of Huachansu (HCS) combination chemotherapy for treating non-small cell lung cancer (NSCLC) and provide summarized evidence for clinical decision making. METHODS: From the creation of the database to JUNE 2023, 8 databases in English and Chinese were searched. SRs/MAs that met the inclusion and exclusion criteria were included. Two reviewers independently screened research, extracted data and assessed methodological quality, risk of bias, report quality and evidence quality by using relevant criteria from AMSTAR-2, ROBIS scale, PRISMA, and GRADE system. RESULTS: The short-term effect, long-term effect, quality of life improvement, safety and pain relief effect in 8 included SRs/MAs were assessed in this overview according to quantitative synthesis. Results assessed by AMSTAR-2, PRISMA, and ROBIS were generally unsatisfactory, with the results of the AMSTAR-2 assessment showing that all of them were of low or critically low quality; the number of items in the included research that were fully reported (compliance was 100%) by the PRISMA checklist was only 50%, while there were 38.10% of the research reporting less than 60% completeness; the ROBIS assessment showed a small number of systems to be low risk of bias. In addition, 26 items were rated as moderate quality, while 50.94% of items were rated as low or critically low quality by GRADE. CONCLUSION: HCS may be a promising adjuvant therapy for NSCLC. However, high-quality SRs/MAs and randomized control trials (RCTs) should be conducted to provide sufficient evidence so as to draw a definitive conclusion.


Subject(s)
Amphibian Venoms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Combined Modality Therapy , Lung Neoplasms/drug therapy , Systematic Reviews as Topic , Meta-Analysis as Topic
18.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38470770

ABSTRACT

Conventional sandwich structure photoelectrochemical UV detectors cannot detect UV light below 300 nm due to UV filtering problems. In this work, we propose to place the electron collector inside the active material, thus avoiding the effect of electrodes on light absorption. We obtained a TiO2-nanotubes@Ti@quartz photoanode structure by precise treatment of a commercial Ti mesh by anodic oxidation. The structure can absorb any light in the near-UV band and has superior stability to other metal electrodes. The final encapsulated photoelectrochemical UV detectors exhibit good switching characteristics with a response time below 100 ms. The mechanism of the oxidation conditions on the photovoltaic performance of the device was investigated by the electrochemical impedance method, and we obtained the optimal synthesis conditions. Response tests under continuous spectroscopy confirm that the response range of the device is extended from 300-400 nm to 240-400 nm. This idea of a built-in collector is an effective way to extend the response range of a photoelectrochemical detector.

19.
Front Plant Sci ; 15: 1367205, 2024.
Article in English | MEDLINE | ID: mdl-38504890

ABSTRACT

Surface blooms of colony-forming Microcystis are increasingly occurring in aquatic ecosystems on a global scale. Recent studies have found that the Microcystis colonial morphology is a crucial factor in the occurrence, persistence, and dominance of Microcystis blooms, yet the mechanism driving its morphological dynamics has remained unknown. This study conducted a laboratory experiment to test the effect of extracellular polymeric substances on the morphological dynamics of Microcystis. Ultrasound was used to disaggregate colonies, isolating the cells and of the Microcystis suspension. The single cells were then re-cultured under three homologous EPS concentrations: group CK, group Low, and group High. The size, morphology, and EPS [including tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS), bound polysaccharides (B-polysaccharides), and bound proteins (B-proteins)] changes of colonies were closely monitored over a period of 2 months. It was observed that colonies were rapidly formed in group CK, with median colony size (D50) reaching 183 µm on day 12. The proportion of colonies with a size of 150-500 µm increased from 1% to more than 50%. Colony formation was also observed in both groups Low and High, but their D50 increased at a slower rate and remained around 130 µm after day 17. Colonies with a size of 50-150 µm account for more than 50%. Groups CK and Low successively recovered the initial Microcystis morphology, which is a ring structure formed of several small colonies with a D50 of 130 µm. During the recovery of the colony morphology, the EPS per cell increased and then decreased, with TB-EPS and B-polysaccharides constituting the primary components. The results suggest that colony formation transitioned from adhesion driven to being division driven over time. It is suggested that the homologous EPS released into the ambient environment due to the disaggregation of the colony is a chemical cue that can affect the formation of a colony. This plays an important but largely ignored role in the dynamics of Microcystis and surface blooms.

20.
Biotechnol Biofuels Bioprod ; 17(1): 26, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360745

ABSTRACT

The cultivation of microalgae and microalgae-bacteria consortia provide a potential efficient strategy to fix CO2 from waste gas, treat wastewater and produce value-added products subsequently. This paper reviews recent developments in CO2 fixation and wastewater treatment by single microalgae, mixed microalgae and microalgae-bacteria consortia, as well as compares and summarizes the differences in utilizing different microorganisms from different aspects. Compared to monoculture of microalgae, a mixed microalgae and microalgae-bacteria consortium may mitigate environmental risk, obtain high biomass, and improve the efficiency of nutrient removal. The applied microalgae include Chlorella sp., Scenedesmus sp., Pediastrum sp., and Phormidium sp. among others, and most strains belong to Chlorophyta and Cyanophyta. The bacteria in microalgae-bacteria consortia are mainly from activated sludge and specific sewage sources. Bioengineer in CBB cycle in microalgae cells provide effective strategy to achieve improvement of CO2 fixation or a high yield of high-value products. The mechanisms of CO2 fixation and nutrient removal by different microbial systems are also explored and concluded, the importance of microalgae in the technology is proven. After cultivation, microalgae biomass can be harvested through physical, chemical, biological and magnetic separation methods and used to produce high-value by-products, such as biofuel, feed, food, biochar, fertilizer, and pharmaceutical bio-compounds. Although this technology has brought many benefits, some challenging obstacles and limitation remain for industrialization and commercializing.

SELECTION OF CITATIONS
SEARCH DETAIL