Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Neurosci Bull ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703276

ABSTRACT

Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.

2.
Haematologica ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695130

ABSTRACT

Venous Thromboembolism (VTE) is a complex disease that can be classified into two subtypes: Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE). Previous observational studies have shown associations between lipids and VTE, but causality remains unclear. Hence, by utilizing 241 lipid-related traits as exposures and data from the FinnGen consortium on VTE, DVT, and PE as outcomes, we conducted two-sample Mendelian randomization (MR) analysis to investigate causal relationships between lipids and VTE, DVT and PE. The MR results identified that fatty acid (FA) unsaturation traits (Ratio of bis-allylic bonds to double bonds in lipids, and Ratio of bis-allylic bonds to total fatty acids in lipids) were associated with VTE (OR [95% CI]: 1.21 [1.15-1.27]; 1.21 [1.13-1.30]), DVT (OR [95%CI]: 1.24 [1.16-1.33]; 1.26 [1.16-1.36]) and PE (OR [95%CI]: 1.18 [1.08-1.29]; 1.18 [1.09-1.27]). Phosphatidylcholines exhibit potential causal effects on VTE and PE. Phosphatidylcholine acyl-alkyl C40:4 (PC ae C40:4) was negatively associated with VTE (OR [95% CI]: 0.79 [0.73-0.86]), while phosphatidylcholine diacyl C42:6 (PC aa C42:6) and phosphatidylcholine acyl-alkyl C36:4 (PC ae C36:4) were positively associated with PE (OR [95%CI]: 1.44 [1.20-1.72]; 1.22 [1.10-1.35]). Additionally, we found that medium LDL had a protective effect on VTE. Our study indicates that higher FA unsaturation may increase the risk of VTE, DVT, and PE. Different types of phosphatidylcholine have either promotive or inhibitory effects on VTE and PE, contributing to a better understanding of the risk factors for VTE.

3.
Biol Psychiatry ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38432522

ABSTRACT

BACKGROUND: Growing evidence indicates that dynamic changes in gut microbiome can affect intelligence; however, whether these relationships are causal remains elusive. We aimed to disentangle the poorly understood causal relationship between gut microbiota and intelligence. METHODS: We performed a 2-sample Mendelian randomization (MR) analysis using genetic variants from the largest available genome-wide association studies of gut microbiota (N = 18,340) and intelligence (N = 269,867). The inverse-variance weighted method was used to conduct the MR analyses complemented by a range of sensitivity analyses to validate the robustness of the results. Considering the close relationship between brain volume and intelligence, we applied 2-step MR to evaluate whether the identified effect was mediated by regulating brain volume (N = 47,316). RESULTS: We found a risk effect of the genus Oxalobacter on intelligence (odds ratio = 0.968 change in intelligence per standard deviation increase in taxa; 95% CI, 0.952-0.985; p = 1.88 × 10-4) and a protective effect of the genus Fusicatenibacter on intelligence (odds ratio = 1.053; 95% CI, 1.024-1.082; p = 3.03 × 10-4). The 2-step MR analysis further showed that the effect of genus Fusicatenibacter on intelligence was partially mediated by regulating brain volume, with a mediated proportion of 33.6% (95% CI, 6.8%-60.4%; p = .014). CONCLUSIONS: Our results provide causal evidence indicating the role of the microbiome in intelligence. Our findings may help reshape our understanding of the microbiota-gut-brain axis and development of novel intervention approaches for preventing cognitive impairment.

4.
Cell Genom ; 4(3): 100501, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38335956

ABSTRACT

The precise roles of chromatin organization at osteoporosis risk loci remain largely elusive. Here, we combined chromatin interaction conformation (Hi-C) profiling and self-transcribing active regulatory region sequencing (STARR-seq) to qualify enhancer activities of prioritized osteoporosis-associated single-nucleotide polymorphisms (SNPs). We identified 319 SNPs with biased allelic enhancer activity effect (baaSNPs) that linked to hundreds of candidate target genes through chromatin interactions across 146 loci. Functional characterizations revealed active epigenetic enrichment for baaSNPs and prevailing osteoporosis-relevant regulatory roles for their chromatin interaction genes. Further motif enrichment and network mapping prioritized several putative, key transcription factors (TFs) controlling osteoporosis binding to baaSNPs. Specifically, we selected one top-ranked TF and deciphered that an intronic baaSNP (rs11202530) could allele-preferentially bind to YY2 to augment PAPSS2 expression through chromatin interactions and promote osteoblast differentiation. Our results underline the roles of TF-mediated enhancer-promoter contacts for osteoporosis, which may help to better understand the intricate molecular regulatory mechanisms underlying osteoporosis risk loci.


Subject(s)
Osteoporosis , Regulatory Sequences, Nucleic Acid , Humans , Transcription Factors/genetics , Osteoporosis/genetics , Chromatin/genetics , Promoter Regions, Genetic/genetics
5.
Nat Commun ; 15(1): 1409, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360850

ABSTRACT

The synovium is an important component of any synovial joint and is the major target tissue of inflammatory arthritis. However, the multi-omics landscape of synovium required for functional inference is absent from large-scale resources. Here we integrate genomics with transcriptomics and chromatin accessibility features of human synovium in up to 245 arthritic patients, to characterize the landscape of genetic regulation on gene expression and the regulatory mechanisms mediating arthritic diseases predisposition. We identify 4765 independent primary and 616 secondary cis-expression quantitative trait loci (cis-eQTLs) in the synovium and find that the eQTLs with multiple independent signals have stronger effects and heritability than single independent eQTLs. Integration of genome-wide association studies (GWASs) and eQTLs identifies 84 arthritis related genes, revealing 38 novel genes which have not been reported by previous studies using eQTL data from the GTEx project or immune cells. We further develop a method called eQTac to identify variants that could affect gene expression by affecting chromatin accessibility and identify 1517 regions with potential regulatory function of chromatin accessibility. Altogether, our study provides a comprehensive synovium multi-omics resource for arthritic diseases and gains new insights into the regulation of gene expression.


Subject(s)
Arthritis , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease/genetics , Gene Expression Regulation , Chromatin/genetics , Synovial Membrane , Arthritis/genetics , Polymorphism, Single Nucleotide
6.
Diabetes Obes Metab ; 26(1): 135-147, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37779362

ABSTRACT

AIM: Genome-wide association studies (GWAS) have identified multiple susceptibility loci associated with insulin resistance (IR)-relevant phenotypes. However, the genes responsible for these associations remain largely unknown. We aim to identify susceptibility genes for IR-relevant phenotypes via a transcriptome-wide association study. MATERIALS AND METHODS: We conducted a large-scale multi-tissue transcriptome-wide association study for IR (Insulin Sensitivity Index, homeostasis model assessment-IR, fasting insulin) and lipid-relevant traits (high-density lipoprotein cholesterol, triglycerides, low-density lipoprotein cholesterol and total cholesterol) using the largest GWAS summary statistics and precomputed gene expression weights of 49 human tissues. Conditional and joint analyses were implemented to identify significantly independent genes. Furthermore, we estimated the causal effects of independent genes by Mendelian randomization causal inference analysis. RESULTS: We identified 1190 susceptibility genes causally associated with IR-relevant phenotypes, including 58 genes that were not implicated in the original GWAS. Among them, 11 genes were further supported in differential expression analyses or a gene knockout mice database, such as KRIT1 showed both significantly differential expression and IR-related phenotypic effects in knockout mice. Meanwhile, seven proteins encoded by susceptibility genes were targeted by clinically approved drugs, and three of these genes (H6PD, CACNB2 and DRD2) have been served as drug targets for IR-related diseases/traits. Moreover, drug repurposing analysis identified four compounds with profiles opposing the expression of genes associated with IR risk. CONCLUSIONS: Our study provided new insights into IR aetiology and avenues for therapeutic development.


Subject(s)
Insulin Resistance , Transcriptome , Animals , Humans , Mice , Cholesterol, LDL , Genetic Predisposition to Disease , Genome-Wide Association Study , Insulin Resistance/genetics , Phenotype , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis
7.
Am J Hum Genet ; 110(8): 1266-1288, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37506691

ABSTRACT

Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.


Subject(s)
Insulin Resistance , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study , Insulin Resistance/genetics , Transcription Factors/genetics , Chromatin/genetics , Phenotype , Enhancer Elements, Genetic/genetics
8.
BMC Med ; 21(1): 271, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491271

ABSTRACT

BACKGROUND: Stroke is a major cause of mortality and long-term disability worldwide. Whether the associations between brain imaging-derived phenotypes (IDPs) and stroke are causal is uncertain. METHODS: We performed two-sample bidirectional Mendelian randomization (MR) analyses to explore the causal associations between IDPs and stroke. Summary data of 587 brain IDPs (up to 33,224 individuals) from the UK Biobank and five stroke types (sample size range from 301,663 to 446,696, case number range from 5,386 to 40,585) from the MEGASTROKE consortium were used. RESULTS: Forward MR indicated 14 IDPs belong to projection fibers or association fibers were associated with stroke. For example, higher genetically determined mean diffusivity (MD) in the right external capsule was causally associated with an increased risk of small vessel stroke (IVW OR = 2.76, 95% CI 2.07 to 3.68, P = 5.87 × 10-12). Reverse MR indicated that genetically determined higher risk of any ischemic stroke was associated with increased isotropic or free water volume fraction (ISOVF) in body of corpus callosum (IVW ß = 0.23, 95% CI 0.14 to 0.33, P = 3.22 × 10-7). This IDP is a commissural fiber and it is not included in the IDPs identified by forward MR. CONCLUSIONS: We identified 14 IDPs with statistically significant evidence of causal effects on stroke or stroke subtypes. We also identified potential causal effects of stroke on one IDP of commissural fiber. These findings might guide further work toward identifying preventative strategies at the brain imaging levels.


Subject(s)
Mendelian Randomization Analysis , Stroke , Humans , Stroke/diagnostic imaging , Stroke/genetics , Brain/diagnostic imaging , Phenotype , Neuroimaging , Genome-Wide Association Study , Polymorphism, Single Nucleotide
9.
Yi Chuan ; 45(4): 279-294, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37077163

ABSTRACT

3D genomics aims to investigate the spatial structure of chromatin in the nucleus on the basis of genomic sequences, gene structures and relevant regulatory elements. The spatial organization of chromosomes is fundamental for gene expression regulation. Recent advances of high-throughput chromosome conformation capture (Hi-C) technology and its derivatives, has enabled capture of chromatin architecture with high resolution. In this review, we summarize the development and applications of various technologies of 3D genomes in disease research, particularly in the elucidation of pathogenic mechanisms in cancers and other systemic disorders.


Subject(s)
Chromatin , Chromosomes , Chromatin/genetics , Chromosomes/genetics , Genomics/methods , Cell Nucleus , Genome
10.
Am J Hum Genet ; 110(4): 625-637, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36924774

ABSTRACT

Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Proliferation/genetics , Cells, Cultured , Chromosomes , Fibroblasts/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Repressor Proteins/genetics , Synoviocytes/metabolism , Synoviocytes/pathology , Actin-Related Protein 2/metabolism
11.
Cell Death Dis ; 13(10): 866, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224171

ABSTRACT

Human mesenchymal stem cells (hMSCs) can be differentiated into osteoblasts and adipocytes. During these processes, super enhancers (SEs) play important roles. Here, we performed comprehensive characterization of the SEs changes associated with adipogenic and osteogenic differentiation of hMSCs, and revealed that SEs changed more dramatically compared with typical enhancers. We identified a set of lineage-selective SEs, whose target genes were enriched with cell type-specific functions. Functional experiments in lineage-selective SEs demonstrated their specific roles in directed differentiation of hMSCs. We also found that some key transcription factors regulated by lineage-selective SEs could form core regulatory circuitry (CRC) to regulate each other's expression and control the hMSCs fate determination. In addition, we found that GWAS SNPs of osteoporosis and obesity were significantly enriched in osteoblasts-selective SEs or adipocytes-selective SEs, respectively. Taken together, our studies unveiled important roles of lineage-selective SEs in hMSCs differentiation into osteoblasts and adipocytes.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Adipogenesis/genetics , Cell Differentiation/genetics , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics , Transcription Factors/metabolism
12.
Nat Neurosci ; 25(11): 1519-1527, 2022 11.
Article in English | MEDLINE | ID: mdl-36216997

ABSTRACT

Observational studies have reported the correlations between brain imaging-derived phenotypes (IDPs) and psychiatric disorders; however, whether the relationships are causal is uncertain. We conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the causalities between 587 reliable IDPs (N = 33,224 individuals) and 10 psychiatric disorders (N = 9,725 to 161,405). We identified nine IDPs for which there was evidence of a causal influence on risk of schizophrenia, anorexia nervosa and bipolar disorder. For example, 1 s.d. increase in the orientation dispersion index of the forceps major was associated with 32% lower odds of schizophrenia risk. Reverse MR indicated that only genetically predicted schizophrenia was positively associated with two IDPs, the cortical surface area and the volume of the right pars orbitalis. We established the BrainMR database ( http://www.bigc.online/BrainMR/ ) to share our results. Our findings provide potential strategies for the prediction and intervention for psychiatric disorder risk at the brain-imaging level.


Subject(s)
Mendelian Randomization Analysis , Mental Disorders , Humans , Mendelian Randomization Analysis/methods , Mental Disorders/diagnostic imaging , Mental Disorders/genetics , Causality , Phenotype , Neuroimaging , Genome-Wide Association Study
13.
J Clin Hypertens (Greenwich) ; 24(10): 1381-1389, 2022 10.
Article in English | MEDLINE | ID: mdl-36039789

ABSTRACT

Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), a member of the E3 ubiquitin-protein ligases, encoded by NEDD4L gene, was found to be involved in in salt sensitivity by regulating sodium reabsorption in salt-sensitive rats. The authors aimed to explore the associations of NEDD4L genetic variants with salt sensitivity, blood pressure (BP) changes and hypertension incidence in Chinese adults. Participants from 124 families in Northern China in the Baoji Salt-Sensitive Study Cohort in 2004, who received the chronic salt intake intervention, including a 7-day low-salt diet (3.0 g/day) and a 7-day high-salt diet (18 g/day), were analyzed. Besides, the development of hypertension over 14 years was evaluated. NEDD4L single nucleotide polymorphism (SNP) rs74408486 was shown to be significantly associated with systolic BP (SBP), diastolic BP (DBP) and mean arterial pressure (MAP) responses to low-salt diet, while SNPs rs292449 and rs2288775 were significantly associated with pulse pressure (PP) response to high-salt diet. In addition, SNP rs4149605, rs73450471, and rs482805 were significantly associated with the longitudinal changes in SBP, DBP, MAP, or PP at 14 years of follow-up. SNP rs292449 was significantly associated with hypertension incidence over the 14-year follow-up. Finally, this gene-based analysis found that NEDD4L was significantly associated with longitudinal BP changes and the incidence of hypertension over the 14-year follow-up. This study indicated that gene polymorphism in NEDD4L serve an important function in salt sensitivity, longitudinal BP change and development of hypertension in the Chinese population.


Subject(s)
Hypertension , Nedd4 Ubiquitin Protein Ligases , Humans , Blood Pressure/genetics , China/epidemiology , Hypertension/epidemiology , Hypertension/genetics , Incidence , Polymorphism, Single Nucleotide , Sodium , Sodium Chloride, Dietary/adverse effects , Ubiquitin-Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/genetics
14.
Nat Hum Behav ; 6(11): 1569-1576, 2022 11.
Article in English | MEDLINE | ID: mdl-35851841

ABSTRACT

Growing evidence suggests that relative carbohydrate intake affects depression; however, the association between carbohydrates and depression remains controversial. To test this, we performed a two-sample bidirectional Mendelian randomization (MR) analysis using genetic variants associated with relative carbohydrate intake (N = 268,922) and major depressive disorder (N = 143,265) from the largest available genome-wide association studies. MR evidence suggested a causal relationship between higher relative carbohydrate intake and lower depression risk (odds ratio, 0.42 for depression per one-standard-deviation increment in relative carbohydrate intake; 95% confidence interval, 0.28 to 0.62; P = 1.49 × 10-5). Multivariable MR indicated that the protective effect of relative carbohydrate intake on depression persisted after conditioning on other diet compositions. The mediation analysis via two-step MR showed that this effect was partly mediated by body mass index, with a mediated proportion of 15.4% (95% confidence interval, 6.7% to 24.1%). These findings may inform prevention strategies and interventions directed towards relative carbohydrate intake and depression.


Subject(s)
Depressive Disorder, Major , Mendelian Randomization Analysis , Humans , Genome-Wide Association Study , Depressive Disorder, Major/genetics , Depression/genetics , Carbohydrates
15.
Cell Death Differ ; 29(12): 2503-2518, 2022 12.
Article in English | MEDLINE | ID: mdl-35906483

ABSTRACT

Human mesenchymal stem cells (hMSCs) can be differentiated into adipocytes and osteoblasts. The processes are driven by the rewiring of chromatin architectures and transcriptomic/epigenomic changes. Here, we induced hMSCs to adipogenic and osteogenic differentiation, and performed 2 kb resolution Hi-C experiments for chromatin loops detection. We also generated matched RNA-seq, ChIP-seq and ATAC-seq data for integrative analysis. After comprehensively comparing adipogenesis and osteogenesis, we quantitatively identified lineage-specific loops and screened out lineage-specific enhancers and open chromatin. We reveal that lineage-specific loops can activate gene expression and facilitate cell commitment through combining enhancers and accessible chromatin in a lineage-specific manner. We finally proposed loop-mediated regulatory networks and identified the controlling factors for adipocytes and osteoblasts determination. Functional experiments validated the lineage-specific regulation networks towards IRS2 and RUNX2 that are associated with adipogenesis and osteogenesis, respectively. These results are expected to help better understand the chromatin conformation determinants of hMSCs fate commitment.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Osteogenesis/genetics , Epigenomics , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism
16.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35580855

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology has been widely used to facilitate efficient genome editing. Current popular sgRNA design tools only consider the sgRNA perfectly matched to the target site and provide the results without any on-target mismatch. We suppose taking on-target gRNA-DNA mismatches into consideration might provide better sgRNA with similar binding activity and reduced off-target sites. Here, we trained a seq2seq-attention model with feedback-loop architecture, to automatically generate sgRNAs with on-target mismatches. Dual-luciferase reporter experiment showed that multiple sgRNAs with three mismatches could achieve the 80% of the relative activity of the perfect matched sgRNA. Meanwhile, it could reduce the number of off-target sites using sgRNAs with on-target mismatches. Finally, we provided a freely accessible web server sgRNA design tool named ExsgRNA. Users could submit their target sequence to this server and get optimal sgRNAs with less off-targets and similar on-target activity compared with the perfect-matched sgRNA.


Subject(s)
CRISPR-Cas Systems , RNA, Small Untranslated , DNA , Gene Editing/methods , Luciferases/genetics , Luciferases/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism
17.
J Bone Miner Res ; 37(6): 1147-1155, 2022 06.
Article in English | MEDLINE | ID: mdl-35373860

ABSTRACT

Osteoporosis is an age-related complex disease clinically diagnosed with bone mineral density (BMD). Although several genomewide association studies (GWASs) have discovered multiple noncoding genetic variants at 11p15 influencing osteoporosis risk, the functional mechanisms of these variants remain unknown. Through integrating bioinformatics and functional experiments, a potential functional single-nucleotide polymorphism (SNP; rs1440702) located in an enhancer element was identified and the A allele of rs1440702 acted as an allelic specificities enhancer to increase its distal target gene SOX6 (~600 Kb upstream) expression, which plays a key role in bone formation. We also validated this long-range regulation via conducting chromosome conformation capture (3C) assay. Furthermore, we demonstrated that SNP rs1440702 with a risk allele (rs1440702-A) could increase the activity of the enhancer element by altering the binding affinity of the transcription factor TCF4, resulting in the upregulation expression of SOX6 gene. Collectively, our integrated analyses revealed how the noncoding genetic variants (rs1440702) affect osteoporosis predisposition via long-range gene regulatory mechanisms and identified its target gene SOX6 for downstream biomarker and drug development. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Enhancer Elements, Genetic , Genetic Predisposition to Disease , Osteoporosis , SOXD Transcription Factors/genetics , Transcription Factor 4/metabolism , Alleles , Bone Density/genetics , Chromatin/genetics , Genome-Wide Association Study , Humans , Osteoporosis/genetics , Polymorphism, Single Nucleotide
18.
EBioMedicine ; 79: 104014, 2022 May.
Article in English | MEDLINE | ID: mdl-35487057

ABSTRACT

BACKGROUND: Accumulative evidences have shown that dysregulation of biological pathways contributed to the initiation and progression of malignant tumours. Several methods for pathway activity measurement have been proposed, but they are restricted to making comparisons between groups or sensitive to experimental batch effects. METHODS: We introduced a novel method for individualized pathway activity measurement (IPAM) that is based on the ranking of gene expression levels in individual sample. Taking advantage of IPAM, we calculated the pathway activity of 318 pathways from KEGG database in the 10528 tumour/normal samples of 33 cancer types from TCGA to identify characteristic dysregulated pathways among different cancer types. FINDINGS: IPAM precisely quantified the level of activity of each pathway in pan-cancer analysis and exhibited better performance in cancer classification and prognosis prediction over five widely used tools. The average ROC-AUC of cancer diagnostic model using tumour-educated platelets (TEPs) reached 92.84%, suggesting the potential of our algorithm in early diagnosis of cancer. We identified several pathways significantly deregulated and associated with patient survival in a large fraction of cancer types, such as tyrosine metabolism, fatty acid degradation, cell cycle, p53 signalling pathway and DNA replication. We also confirmed the dominant role of metabolic pathways in cancer pathway dysregulation and identified the driving factors of specific pathway dysregulation, such as PPARA for branched-chain amino acid metabolism and NR1I2, NR1I3 for fatty acid metabolism. INTERPRETATION: Our study will provide novel clues for understanding the pathological mechanisms of cancer, ultimately paving the way for personalized medicine of cancer. FUNDING: A full list of funding can be found in the Acknowledgements section.


Subject(s)
Neoplasms , Oncogenes , Algorithms , Carcinogenesis/genetics , Fatty Acids , Gene Expression Profiling , Humans , Neoplasms/genetics , Neoplasms/pathology
19.
Microbiome ; 10(1): 46, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272700

ABSTRACT

BACKGROUND: Clustering the metagenomic contigs into potential genomes is a key step to investigate the functional roles of microbial populations. Existing algorithms have achieved considerable success with simulated or real sequencing datasets. However, accurately classifying contigs from complex metagenomes is still a challenge. RESULTS: We introduced a novel clustering algorithm, MetaDecoder, which can classify metagenomic contigs based on the frequencies of k-mers and coverages. MetaDecoder was built as a two-layer model with the first layer being a GPU-based modified Dirichlet process Gaussian mixture model (DPGMM), which controls the weight of each DPGMM cluster to avoid over-segmentation by dynamically dissolving contigs in small clusters and reassigning them to the remaining clusters. The second layer comprises a semi-supervised k-mer frequency probabilistic model and a modified Gaussian mixture model for modeling the coverage based on single copy marker genes. Benchmarks on simulated and real-world datasets demonstrated that MetaDecoder can be served as a promising approach for effectively clustering metagenomic contigs. CONCLUSIONS: In conclusion, we developed the GPU-based MetaDecoder for effectively clustering metagenomic contigs and reconstructing microbial communities from microbial data. Applying MetaDecoder on both simulated and real-world datasets demonstrated that it could generate more complete clusters with lower contamination. Using MetaDecoder, we identified novel high-quality genomes and expanded the existing catalog of bacterial genomes. Video Abstract.


Subject(s)
Metagenome , Metagenomics , Algorithms , Cluster Analysis , Metagenome/genetics , Metagenomics/methods , Sequence Analysis, DNA/methods
20.
Hum Mol Genet ; 31(11): 1871-1883, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34962261

ABSTRACT

Thyroid dysfunction is a common endocrine disease measured by thyroid-stimulating hormone (TSH) level. Although >70 genetic loci associated with TSH have been reported through genome-wide association studies (GWASs), the variants can only explain a small fraction of the thyroid function heritability. To identify novel candidate genes for thyroid function, we conducted the first large-scale transcriptome-wide association study (TWAS) for thyroid function using GWAS-summary data for TSH levels in up to 119 715 individuals combined with precomputed gene expression weights of six panels from four tissue types. The candidate genes identified by TWAS were further validated by TWAS replication and gene expression profiles. We identified 74 conditionally independent genes significantly associated with thyroid function, such as PDE8B (P = 1.67 × 10-282), PDE10A (P = 7.61 × 10-119), NR3C2 (P = 1.50 × 10-92) and CAPZB (P = 3.13 × 10-79). After TWAS replication using UKBB datasets, 26 genes were replicated for significant associations with thyroid-relevant diseases/traits. Among them, 16 genes were causal for their associations to thyroid-relevant diseases/traits and further validated in differential expression analyses, including two novel genes (MFSD6 and RBM47) that did not implicate in previous GWASs. Enrichment analyses detected several pathways associated with thyroid function, such as the cAMP signaling pathway (P = 7.27 × 10-4), hemostasis (P = 3.74 × 10-4), and platelet activation, signaling and aggregation (P = 9.98 × 10-4). Our study identified multiple candidate genes and pathways associated with thyroid function, providing novel clues for revealing the genetic mechanisms of thyroid function and disease.


Subject(s)
Genome-Wide Association Study , Transcriptome , Genetic Predisposition to Disease , Humans , Phosphoric Diester Hydrolases/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , Thyroid Gland , Thyrotropin/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...