Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Osteoporos Int ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625381

ABSTRACT

Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE: Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS: Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS: Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION: This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.

2.
Int J Biol Macromol ; 265(Pt 1): 130959, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499127

ABSTRACT

Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1ß), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.


Subject(s)
Basidiomycota , Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Inflammation , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate/adverse effects , Colon , Mice, Inbred C57BL
3.
Cancer Med ; 12(13): 14820-14832, 2023 07.
Article in English | MEDLINE | ID: mdl-37162299

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a common subtype of non-small cell lung cancer with high morbidity and mortality rates and is usually detected at advanced stages because of the early onset of metastasis. Adenosine deaminase RNA-specific 1 (ADAR1) is an RNA editing enzyme that catalyzes the important physiological process of adenosine-to-inosine editing and has been shown to participate in the progression of LUAD. Increasing evidence has suggested that immune infiltration of the tumor immune microenvironment has prognostic value for most human solid organ malignancies; however, much is unknown about the functions of ADAR1. METHODS: The expression of ADAR1 was analyzed in The Cancer Genome Atlas -LUAD database and validated in our LUAD cohort. To assess the prognostic value of ADAR1, Kaplan-Meier survival analyses and Cox regression analyses were carried out in LUAD cohorts. The association between ADAR1 and LUAD immune infiltrates via analyses of cell-type identification by estimating relative subsets of known RNA transcripts. Furthermore, multiplex immunohistochemistry was used to confirm the relationship between ADAR1 expression and immune cells in the present cohort of patients with LUAD. RESULTS: ADAR1 was highly expressed in LUAD tissues and closely correlated with lymph node metastasis (LNM) (p < 0.01), advanced tumor stage (p < 0.05), and poor patient prognosis (p < 0.01), thus indicating that increased ADAR1 contributed to the progression of LUAD. LUAD with high ADAR1 expression can metastasize to lymph nodes that express more ADAR1 than the primary lesion. In addition, M0 macrophages and M2 macrophages increased and CD4+ T cells decreased in LUAD tissues with high ADAR1 expression. And the expression of ADAR1 in lymph node metastases was negatively correlated with the contents of CD4+ T cells (p = 0.0017) and M1 macrophages (p = 0.0037). CONCLUSION: The findings of our study suggested that ADAR1 may be useful in predicting prognosis and LNM in LUAD, and may serve as a promising immune-related molecular target for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adenosine Deaminase/genetics , Prognosis , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Lymphatic Metastasis , Biomarkers , Tumor Microenvironment
4.
J Clin Endocrinol Metab ; 108(7): 1768-1775, 2023 06 16.
Article in English | MEDLINE | ID: mdl-36611251

ABSTRACT

OBJECTIVE: To define somatic variants of parathyroid adenoma (PA) and to provide novel insights into the underlying molecular mechanism of sporadic PA. METHODS: Basic clinical characteristics and biochemical indices of 73 patients with PA were collected. Whole-exome sequencing was performed on matched tumor-constitutional DNA pairs to detect somatic alterations. Functional annotation was carried out by ingenuity pathway analysis afterward. The protein expression of the variant gene was confirmed by immunohistochemistry, and the relationship between genotype and phenotype was analyzed. RESULTS: Somatic variants were identified in 1549 genes, with an average of 69 variants per tumor (range, 13-2109; total, 9083). Several novel recurrent somatic variants were detected, such as KMT2D (15/73), MUC4 (14/73), POTEH (13/73), CD22 (12/73), HSPA2 (12/73), HCFC1 (11/73), MAGEA1 (11/73), and SLC4A3 (11/73), besides the previously reported PA-related genes, including MEN1 (11/73), CASR (6/73), MTOR (4/73), ASXL3 (3/73), FAT1 (3/73), ZFX (5/73), EZH1 (2/73), POT1 (2/73), and EZH2 (1/73). Among them, KMT2D might be the candidate driver gene of PA. Crucially, 5 patients carried somatic mutations in CDC73, showed an aggressive phenotype similar to that of parathyroid carcinoma (PC), and had a decreased expression of parafibromin. Pathway analysis of recurrent potential PA-associated driver variant genes revealed functional enrichments in the signaling pathway of Notch. CONCLUSION: Our study expanded the pathogenic variant spectrum of PA and indicated that KMT2D might be a novel candidate driver gene and be considered as a diagnostic biomarker for PA. Meanwhile, CDC73 mutations might be an early developmental event from PA to PC. The results provided insights into elucidating the pathogenesis of parathyroid tumorigenesis and a certain basis for clinical diagnosis and treatment.


Subject(s)
Parathyroid Neoplasms , Humans , East Asian People , Genomics , Mutation , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/pathology
5.
Nat Commun ; 14(1): 479, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717564

ABSTRACT

The transport of the CagA effector into gastric epithelial cells by the Cag Type IV secretion system (Cag T4SS) of Helicobacter pylori (H. pylori) is critical for pathogenesis. CagA is recruited to Cag T4SS by the Cagß ATPase. CagZ, a unique protein in H. pylori, regulates Cagß-mediated CagA transport, but the underlying mechanisms remain unclear. Here we report the crystal structure of the cytosolic region of Cagß, showing a typical ring-like hexameric assembly. The central channel of the ring is narrow, suggesting that CagA must unfold for transport through the channel. Our structure of CagZ in complex with the all-alpha domain (AAD) of Cagß shows that CagZ adopts an overall U-shape and tightly embraces Cagß. This binding mode of CagZ is incompatible with the formation of the Cagß hexamer essential for the ATPase activity. CagZ therefore inhibits Cagß by trapping it in the monomeric state. Based on these findings, we propose a refined model for the transport of CagA by Cagß.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , Helicobacter pylori , Adenosine Triphosphatases/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Helicobacter pylori/metabolism , Type IV Secretion Systems/metabolism
6.
Immunology ; 168(2): 320-330, 2023 02.
Article in English | MEDLINE | ID: mdl-36151890

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the leading causes of death worldwide. Brain metastases are a common complication of a wide range of human malignancies, particularly lung adenocarcinoma (LUAD). Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and has been shown to promote LUAD tumorigenesis. However, its function in the tumour immune microenvironment (TIME) remains largely unexplored, especially in complex brain tissue environments. In this study, BDNF was found to be particularly increased in patients with advanced tumour stage, lymphatic metastasis, and distant metastasis, indicating a correlation with LUAD progression. We characterized the prognostic value of BDNF and defined BDNF as an unfavourable prognostic indicator through a common driver gene-independent mechanism in LUAD. Furthermore, patients with increased BDNF levels in primary LUAD might have a higher risk of developing brain metastasis (BM), and central nervous system (CNS) metastasis showed an elevated expression of BDNF compared to their matched primary lesions. Additionally, we investigated the interaction between BDNF and infiltrating immune cells in both primary lesions and paired BM using multiplex immunostaining. The results showed that BDNF might drive an immunosuppressive tumour microenvironment (TME) by re-education of tumour-associated macrophages (TAMs) toward a pro-tumorigenic M2 phenotype, particularly in BM. Our findings demonstrate that BDNF serves as an independent potential prognostic marker and correlates with BM in LUAD. As it is closely related to TAM polarization, BDNF may be a promising immune-related biomarker and molecular target in patients with LUAD.


Subject(s)
Adenocarcinoma of Lung , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Brain-Derived Neurotrophic Factor , Prognosis , Carcinogenesis , Tumor Microenvironment
7.
J Orthop Surg Res ; 17(1): 558, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550514

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease. Abnormal proliferation and inflammation of fibroblast-like synoviocytes (FLSs) are the main pathological features of the disease. Accumulating studies have identified that circular RNAs (circRNAs) were involved in the progression of RA. Our study was to assess the function and mechanism of circ_0083964 in RA. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were utilized to test the level of circ_0083964, miR-204-5p and YY1. Counting Kit-8 (CCK-8) assay, EdU assay, flow cytometry, transwell assay and wound-healing assay were utilized to test cell viability, proliferation, apoptosis, invasion and migration. Cell inflammation was estimated with enzyme-linked immunosorbent assay (ELISA) kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to identify the target relationship between miR-204-5p and circ_0083964 or YY1. RESULTS: Circ_0083964 was highly expressed in RA synovial tissues and RA-FLSs. Circ_0083964 downregulation constrained proliferation, metastasis and inflammation and facilitated apoptosis in RA-FLSs. Furthermore, circ_0083964 served as a sponge of miR-204-5p, and rescue experiments proved that miR-204-5p deficiency overturned the suppressive impacts of circ_0083964 silencing on RA-FLSs progression. Additionally, we also verified that YY1 could be targeted by miR-204-5p, and its overexpression rescued the repressive impact of miR-204-5p introduction on RA-FLSs development. Besides that, we revealed that circ_0083964 mediated YY1 expression by regulating miR-204-5p. CONCLUSION: Circ_0083964 inhibition confined RA development by sponging miR-204-5p to hamper the YY1 level, which will provide a theoretical basis for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , MicroRNAs , Humans , Arthritis, Rheumatoid/genetics , Inflammation , Synovial Membrane , Apoptosis/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , YY1 Transcription Factor/genetics
8.
Transbound Emerg Dis ; 69(5): e1923-e1935, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35312168

ABSTRACT

African Swine Fever (ASF) is a highly contagious viral haemorrhagic disease of swine, leading to enormous economic losses in the swine industry. However, vaccines and drugs to treat ASF have yet to be developed. African swine fever virus (ASFV) encodes more than 150 proteins, but 50% of them have unknown functions. Here, we present the crystal structure of the ASFV I73R protein at a resolution of 2.0 Å. Similar search tools based solely on amino acid sequence shows that it has no relationships to any proteins of known function. Interestingly, the overall structure of the I73R protein shares a winged helix-turn-helix fold, structural similarity with the Z-DNA binding domain (Zα). In accordance with this result, the I73R is capable of binding to a CpG repeats DNA duplex, which has a high propensity for forming Z-DNA during the DNA binding assays. In addition, the I73R protein was shown to be expressed at both early and late stages of ASFV post-infection in PAM cells as an 8.9 kDa protein. Immunofluorescence studies revealed that the I73R protein is expressed in the nucleus at early times post-infection and gradually translocated from the nucleus to the cytoplasm. Taken together, these data indicate that the I73R could be a member of Zα family that is important in host-pathogen interaction, which paves the way for the design of inhibitors to target this severe pathogen. Further exploring the biological role of I73R during ASFV infection in vitro and in vivo will provide new clues for development of new antiviral strategies.


Subject(s)
African Swine Fever Virus , African Swine Fever , DNA, Z-Form , Swine Diseases , African Swine Fever Virus/genetics , Animals , Antiviral Agents/pharmacology , DNA , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Swine
9.
Biochem Biophys Res Commun ; 600: 117-122, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35219099

ABSTRACT

Feruloyl esterases are indispensable biocatalysts catalyzing the cleavage of ester bonds between polysaccharides and their hydroxycinnamoyl cross-links. GthFAE from Geobacillus thermoglucosidasius was identified as a thermophilic alkaline feruloyl esterase with potential applications in paper manufacturing. To improve the enzymatic properties rationally and efficiently, the structure of GthFAE was solved at 1.9 Å, revealing a core domain of classical α/ß hydrolase fold and an inserted α/ß cap domain. In silico analysis based on it helped us to investigate whether the residues at the active center have positive effects on the stability, and how. Several site-directed mutations were conducted, of which substitutions at residues T41 and T150 apparently improved the thermostability. The combination mutant T41N/T150R exhibited an optimal temperature of 65 °C, a 6.4 °C higher Tm compared to wild type by 80 °C, and a 35-fold longer in half-life (201 min) at 70 °C. Molecular dynamics simulations further illustrated that the structure of T41N/T150R was more stable than the wild type and T150R stabilized the cap domain by introducing salt bridges to the region with E154 and D164. This study not only highlighted residues within the active center on their thermostability improving effects, but also contributed to the prospective industrial application of GthFAE.


Subject(s)
Carboxylic Ester Hydrolases , Bacillaceae , Carboxylic Ester Hydrolases/metabolism , Enzyme Stability , Prospective Studies , Temperature
10.
Org Biomol Chem ; 20(4): 783-789, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34989388

ABSTRACT

The synthesis of isoindolinones from N-methoxy benzamides and saturated ketones via a bimetallic tandem catalytic annulation has been accomplished. The reaction is catalyzed by a Rh/Cu-cocatalytic system and proceeds via the combination of Cu-catalyzed dehydrogenation of ketones and Rh-catalyzed direct C-H functionalization with the assistance of the N-methoxy amide group which also acts as an oxidant to regenerate the Rh catalyst. This method shows good compatibility with a wide range of substrates and functional groups, and provides an alternative strategy to obtain diverse isoindolinones.

11.
Angiogenesis ; 25(1): 5-8, 2022 02.
Article in English | MEDLINE | ID: mdl-34342748

ABSTRACT

Anaplastic lymphoma kinase (ALK)/epidermal growth factor receptor (EGFR) co-alterations in adenocarcinomas are rare and no therapeutic consensus is reached. The potentially negative prognostic effects of programmed death-ligand 1 (PD-L1) expression on tyrosine kinase inhibitor (TKIs) efficacy further complicates the treatment options for patients with ALK/EGFR co-alterations and PD-L1 over-expression. We describe a case of advanced lung adenocarcinoma, harboring concurrent ALK/EGFR mutations and extremely high PD-L1 expression, that achieved sustained remission by the first-line treatment strategy of antiangiogenic therapy combined with chemotherapy. It is our firm conviction that the use anti-angiogenics should not have fallen out of favor in this era of targeted therapy and checkpoint inhibitors.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Anaplastic Lymphoma Kinase/genetics , B7-H1 Antigen/genetics , Bevacizumab/therapeutic use , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation
12.
Ir J Med Sci ; 191(5): 2155-2161, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34859333

ABSTRACT

BACKGROUND: Cell division control protein 42 (CDC42) is reported to be involved in multiple inflammation processes by regulating T cell differentiation, maintaining immune cell homeostasis, and altering their function, while no relevant studies explored its clinical role in patients with rheumatoid arthritis (RA). Therefore, this study aimed to explore the correlation of CDC42 with Th1 and Th17 cells and its association with disease risk, activity, and treatment outcomes of RA. METHODS: After the enrollment of 95 active RA patients and 50 healthy subjects (HC), their CDC42, Th1 cells, and Th17 cells were assayed by RT-qPCR and flow cytometry, accordingly. For RA patients only, CDC42 was also detected at W6, and W12 after treatment. The treatment response and remission status were evaluated at W12. RESULTS: Compared to HC, CDC42 was reduced (P < 0.001), while Th1 cells (P = 0.021) and Th17 cells (P < 0.001) were increased in RA patients. Besides, CDC42 was negatively correlated with Th17 cells (P < 0.001), erythrocyte sedimentation rate (ESR) (P = 0.012), C-reactive protein (P = 0.002), and disease activity score in 28 joints (DAS28) (P = 0.007), but did not relate to Th1 cells or other disease features (all P > 0.05) in RA patients. Furthermore, CDC42 was elevated during treatment in RA patients (P < 0.001). Moreover, CDC42 increment at W12 correlated with treatment response (P = 0.004). Besides, CDC42 elevation at W0 (P = 0.038), W6 (P = 0.001), and W12 (P < 0.001) also linked with treatment remission. CONCLUSION: CDC42 has the potential to serve as a biomarker to monitor disease activity and treatment efficacy in patients with RA.


Subject(s)
Arthritis, Rheumatoid , Th17 Cells , Arthritis, Rheumatoid/drug therapy , Biomarkers , C-Reactive Protein/metabolism , Humans , Inflammation , Sulfonamides , Th1 Cells/chemistry , Th1 Cells/metabolism , Th17 Cells/metabolism , Treatment Outcome
13.
Ann Transl Med ; 9(20): 1562, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34790768

ABSTRACT

BACKGROUND: A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs (ADAMTS)-like proteins, including ADAMTSL1-6 and papilin, which are part of the mammalian ADAMTS superfamily, appear to be relevant to extracellular matrix function and the regulation of ADAMTS protease activity. Their roles in tumor initiation and progression and regulating the tumor microenvironment (TME) are now recognized. METHODS: In the present study, a comprehensive investigation of the pan-cancer effects of ADAMTSLs and their associations with patient survival, drug responses, and the TME was performed by integrating The Cancer Genome Atlas (TCGA) data and annotated data resources. RESULTS: The expression of ADAMTSL family members was found to be dysregulated in many cancer types. More importantly, their expression was frequently associated with patients' overall survival (OS), drug responses, and the TME. ADAMTSL1, ADAMTSL4, and ADAMTSL5 were primarily associated with aggressive phenotypes, while PAPLN was more frequently associated with a favorable prognosis. In a non-small cell lung cancer (NSCLC) cohort, Thrombospondin Type 1 Domain Containing 4 (THSD4) (ADAMTSL6) and Papilin (PAPLN) were associated with immune checkpoint inhibitor (ICI) sensitivity in samples from the Gene Expression Omnibus repository (GSE135222). Twenty and 30 proteins related to THSD4 and PAPLN, respectively, were identified through a proteomic analysis of 18 Chinese lung adenocarcinoma patients. CONCLUSIONS: Our findings extend understandings of the role of the ADAMTSL family in cancers and are a valuable resource on their clinical utility. This article provides insight into the clinical importance of next-generation sequencing technology to identify novel biomarkers for prognosis and investigate therapeutic strategy for clinical benefit.

14.
IEEE Trans Biomed Circuits Syst ; 15(4): 777-790, 2021 08.
Article in English | MEDLINE | ID: mdl-34314359

ABSTRACT

An ultra-low power ECG processor ASIC (application specific integrated circuit) with R-wave detection and data compression is presented, which is designed for the long-term implantable cardiac monitoring (ICM) device for arrhythmia diagnosis. An adaptive derivative-based detection algorithm with low computation overhead for potential arrhythmia recording is proposed to detect arrhythmia with the occasional abnormal heart beats. In order to save as much as possible cardiac information with the limited memory size available in the ICM device, a hierarchical data buffer structure is proposed which saves 3 types of data, including the raw ECG data segments of 2 seconds, compressed ECG data segments of 45 seconds, and R-peak values and interval lengths of >2000 beat cycles. A modified swinging-door-trending (SDT) method is proposed for the ECG data compression. The ASIC has been implemented based on fully-customized near-threshold standard cells using the thick-gate transistors in 65-nm CMOS technology for low dynamic power consumption and leakage. The ASIC core occupies a die area of 1.77 mm2. The measured total power is 2.63 µW, which is among the ECG processors with the lowest core power consumption. It exhibits a relatively high positive precision rate (P+) of 99.3% with a sensitivity of 98.2%, in contrast to the similar designs in literature with the same core power consumption level. Also, an ECG data compression ratio (CR) of up to 17.0 has been achieved, with a good trade-off between the compression efficiency and loss.


Subject(s)
Data Compression , Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography , Equipment Design , Humans , Signal Processing, Computer-Assisted
15.
IEEE Trans Biomed Circuits Syst ; 15(4): 655-665, 2021 08.
Article in English | MEDLINE | ID: mdl-34043513

ABSTRACT

An ultra-low-power low-noise analog front end (AFE) is presented in this work, aiming for long-term ECG with clear P-waves for clinical diagnose. The chopper amplifier with passive noise filter and PWM based offset cancellation results in an input-reference noise of 0.39 µVrms, which shows 3.7X noise improvements among the state-of-the-art designs. With the digital offset cancellation by the pulse-width modulation wave, the AFE achieves a low input-referred dc offset of 0.4 µV among 9 tested chips and a low drift under 30 µV. A dynamic scale ADC with low-power comparator strategy prevents the instability and signal-loss, achieving an SFDR of 71.6 dB. The proposed AFE achieves a noise-efficient-factor (NEF) of 2.4 with a power consumption of 4 µW. The fabricated chip is demonstrated in a miniature prototype for long-term ECG monitoring application, presenting a clear ECG waveform with visible P-wave. The simultaneously ECG recording with a medical grade 12-lead ECG Holter shows the effective acquisition of the prototype, proofing the better noise performance.


Subject(s)
Amplifiers, Electronic , Electrocardiography , Electrocardiography, Ambulatory , Equipment Design , Signal Processing, Computer-Assisted
16.
Plant J ; 103(3): 1215-1232, 2020 08.
Article in English | MEDLINE | ID: mdl-32369638

ABSTRACT

The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+ -binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+ . These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.


Subject(s)
Arabidopsis Proteins/chemistry , Calcium-Binding Proteins/chemistry , Carrier Proteins/metabolism , Membrane Proteins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Liposomes/metabolism , Manganese/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Conformation , Sequence Alignment
17.
Comput Struct Biotechnol J ; 18: 821-833, 2020.
Article in English | MEDLINE | ID: mdl-32308929

ABSTRACT

RGLG1 is an E3 ubiquitin ligase in Arabidopsis thaliana that participates in ABA signaling and regulates apical dominance. Here, we present crystal structures of RGLG1 VWA domain, revealing two novel calcium ions binding sites (NCBS1 and NCBS2). Furthermore, the structures with guided mutagenesis in NCBS1 prove that Ca2+ ions play important roles in controlling conformational change of VWA, which is stabilized in open state with Ca2+ bound and converted to closed state after Ca2+ removal. This allosteric regulation mechanism is distinct from the ever reported one involving the C-terminal helix in integrin α and ß I domains. The mutation of a key residue in NCBS2 do not abolish its Ca2+-binding potential, with no conformational change. MD simulations reveals that open state of RGLG1 VWA has higher ligand affinity than its closed state, consisting with integrin. Structural comparison of ion-free-MIDAS with Mg2+-MIDAS reveals that Mg2+ binding to MIDAS does not induce conformational change. With acquisition of first structure of plant VWA domain in both open state and closed state, we carefully analyze the conformational change and propose a totally new paradigm for its transition of open-closed states, which will be of great value for guiding future researches on VWA proteins and their important biological significance.

18.
FEBS J ; 286(21): 4294-4309, 2019 11.
Article in English | MEDLINE | ID: mdl-31230405

ABSTRACT

The VirB/D type IV secretion system (T4SS) plays an essential role in materials transport between host cells and pathogenic Helicobacter pylori and is considered the major pathogenic mediator of H. pylori-associated gastric disease. VirB8, an inner membrane protein that interacts with many other proteins, is a crucial component for secretory function. Here, we present a crystal structure of the periplasmic domain of CagV, the VirB8 counterpart in the H. pylori Cag-T4SS. The structure reveals a fold similar to that of other VirB8 members except for the absence of the α5 helix, a discontinuous ß1 strand, a larger angle between the α2 and α3 helices, a more hydrophobic surface groove, but exhibits a different dimer interface. Whether the dimerization occurs in solution was proved by mutagenesis, size-exclusion chromatography and cross-linking assays. Unlike the classical dimerization mode, the interface of the CagV dimer is principally formed by several hydrogen bonds, which indicates instability of dimerization. The structure here demonstrates the difference in dimerization among VirB8 homologues and indicates the considerable compositional and functional diversity of them in T4SS. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6IQT.


Subject(s)
Helicobacter Infections/microbiology , Helicobacter pylori/chemistry , Membrane Proteins/ultrastructure , Protein Conformation , Crystallography, X-Ray , Helicobacter pylori/pathogenicity , Helicobacter pylori/ultrastructure , Host-Pathogen Interactions/genetics , Humans , Membrane Proteins/chemistry , Periplasm/chemistry , Periplasm/ultrastructure , Protein Binding , Protein Folding , Protein Multimerization/genetics , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/genetics
19.
FEBS J ; 286(14): 2809-2821, 2019 07.
Article in English | MEDLINE | ID: mdl-30974511

ABSTRACT

The phosphate starvation response 1 (PHR1) protein has a central role in mediating the response to phosphate starvation in plants. PHR1 is composed of a number of domains including a MYB domain involved with DNA binding and a coiled-coil domain proposed to be involved with dimer formation. PHR1 binds to the promoter of phosphate starvation-induced genes to control the levels of phosphate required for nutrition. Previous studies have shown that both the MYB domain and the coiled-coil domain of PHR1 are required for binding the target DNA. Here, we describe the crystal structure of the PHR1 MYB domain and two structures of its complex with the PHR1-binding DNA sequence (P1BS). Structural and isothermal titration calorimetry has been carried out showing that the MYB domain of PHR1 alone is sufficient for target DNA recognition and binding. Two copies of the PHR1 MYB domain bind to the same major groove of the P1BS DNA with few direct interactions between the individual MYB domains. In addition, the PHR1 MYB-P1BS DNA complex structures reveal amino acid residues involved in DNA recognition and binding. Mutagenesis of these residues results in lost or impaired ability of PHR1 MYB to bind to its target DNA. The results presented reveal the structural basis for DNA recognition by the PHR1 MYB domain and demonstrate that two PHR1 MYB domains attach to their P1BS DNA targeting sequence. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6J4K (PHR1 MYB), 6J4R (PHR1 MYB-R-P1BS), 6J5B (MYB-CC-R2-P1BS).


Subject(s)
Arabidopsis Proteins/chemistry , DNA/chemistry , Transcription Factors/chemistry , Binding Sites , Protein Domains , Protein Structure, Quaternary
20.
Sensors (Basel) ; 19(8)2019 Apr 13.
Article in English | MEDLINE | ID: mdl-31013907

ABSTRACT

This work presents a complementary metal-oxide-semiconductor (CMOS) ultra-low power temperature sensor chip for cold chain applications with temperatures down to -60 °C. The sensor chip is composed of a temperature-to-current converter to generate a current proportional to the absolute temperature (PTAT), a current controlled oscillator to convert the current to a frequency signal, and a counter as the frequency-to-digital converter. Unlike the conventional linear error calibration method, the nonlinear error of the PTAT current under the low temperature range is fully characterized based on the device model files provided by the foundry. Simulation has been performed, which clearly shows the nonlinear model is much more accurate than the linear model. A nonlinear error calibration method, which requires only two-point calibration, is then proposed. The temperature sensor chip has been designed and fabricated in a 0.13 µm CMOS process, with a total active die area of 0.0014 mm2. The sensor only draws a 140 nA current from a 1.1 V supply, with the key transistors working in the deep subthreshold region. Measurement results show that the proposed nonlinear calibration can decrease the measurement error from -0.9 to +1.1 °C for the measurement range of -60 to +40 °C, in comparison with the error of -1.8 to +5.3 °C using the conventional linear error calibration.

SELECTION OF CITATIONS
SEARCH DETAIL
...