Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Sci Rep ; 14(1): 7421, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548824

ABSTRACT

Radix Fici Simplicissimae (RFS) is widely studied, and is in demand for its value in medicines and food products, with increased scientific focus on its cultivation and breeding. We used ultra-high-performance liquid chromatography quadrupole-orbitrap mass spectrometry-based metabolomics to elucidate the similarities and differences in phytochemical compositions of wild Radix Fici Simplicissimae (WRFS) and cultivated Radix Fici Simplicissimae (CRFS). Untargeted metabolomic analysis was performed with multivariate statistical analysis and heat maps to identify the differences. Eighty one compounds were identified from WRFS and CRFS samples. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that mass spectrometry could effectively distinguish WRFS from CRFS. Among these, 17 potential biomarkers with high metabolic contents could distinguish between the two varieties, including seven phenylpropanoids, three flavonoids, one flavonol, one alkaloid, one glycoside, and four organic acids. Notably, psoralen, apigenin, and bergapten, essential metabolites that play a substantial pharmacological role in RFS, are upregulated in WRFS. WRFS and CRFS are rich in phytochemicals and are similar in terms of the compounds they contain. These findings highlight the effects of different growth environments and drug varieties on secondary metabolite compositions and provide support for targeted breeding for improved CRFS varieties.


Subject(s)
Drugs, Chinese Herbal , Plant Breeding , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Multivariate Analysis , Drugs, Chinese Herbal/chemistry , Metabolomics/methods
2.
Materials (Basel) ; 16(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138768

ABSTRACT

To make the sound absorber easy to fabricate and convenient for practical application, a modular composable acoustic metamaterial with multiple nonunique chambers (MCAM-MNCs) was proposed and investigated, which was divided into a front panel with the same perforated apertures and a rear chamber with a nonunique grouped cavity. Through the acoustic finite element simulation, the parametric studies of the diameter of aperture d, depth of chamber T0, and thickness of panel t0 were conducted, which could tune the sound absorption performances of MCAM-MNCs-1 and MCAM-MNCs-2 for the expected noise reduction effect. The effective sound absorption band of MCAM-MNCs-1 was 556 Hz (773-1329 Hz), 456 Hz (646-1102 Hz), and 387 Hz (564-951 Hz) for T = 30 mm, T = 40 mm, and T = 50 mm, respectively, and the corresponding average sound absorption coefficient was 0.8696, 0.8854, and 0.8916, accordingly, which exhibited excellent noise attenuation performance. The sound absorption mechanism of MCAM-MNCs was investigated by the distributions of the total sound energy density (TSED). The components used to assemble the MCAM-MNCs sample were fabricated by additive manufacturing, and its actual sound absorption coefficients were tested according to the transfer matrix method, which demonstrated its feasibility and promoted its actual application.

3.
J Neurosurg ; : 1-6, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948695

ABSTRACT

OBJECTIVE: Postoperative visual outcome is a major concern of neurosurgeons for patients with craniopharyngiomas. The current study aimed to investigate the value of visual evoked potential (VEP) amplitude reduction (N75-P100 and P100-N145) for predicting postoperative visual dysfunction (POVD) and refining current warning criteria for VEP monitoring. METHODS: Data from 96 patients who underwent the extended endoscopic endonasal approach for craniopharyngiomas between October 2020 and November 2021 were retrospectively reviewed. VEP amplitude reduction ratios were calculated and compared between patients with POVD and those without. Subsequently, the critical threshold values of VEP amplitude reduction ratios for predicting POVD were obtained through receiver operating characteristic curve analysis. Finally, multivariate binary logistic regression analysis was applied to evaluate the effect of potential factors on the probability of experiencing POVD. RESULTS: Both N75-P100 and P100-N145 amplitude reduction ratios were significantly higher in patients with POVD (p < 0.001 for both). The threshold value of the N75-P100 amplitude reduction ratio for predicting POVD was 51.76% with an area under the curve (AUC) of 0.816 (p < 0.001), while the threshold value of the P100-N145 amplitude reduction ratio was 38.80% with an AUC of 0.738 (p < 0.001). Both N75-P100 and P100-N145 amplitude reduction ratios were identified as independent predictors for POVD via multivariate analysis (p < 0.001 and p = 0.018, respectively). CONCLUSIONS: Both N75-P100 and P100-N145 amplitude reduction ratios showed great potential to be indicators for POVD in patients with craniopharyngiomas. Regarding warning criteria for VEP monitoring, the authors recommend that both N75-P100 and P100-N145 amplitude reduction should be considered, with early warning criteria of a 50% reduction for N75-P100 amplitude and/or a 40% reduction for P100-N145 amplitude.

4.
Front Pharmacol ; 14: 1238841, 2023.
Article in English | MEDLINE | ID: mdl-37900162

ABSTRACT

Objective: Aloe-emodin (AE) is an anthraquinone compound extracted from the rhizome of the natural plant rhubarb. Initially, it was shown that AE exerts an anti-inflammatory effect. Further studies revealed its antitumor activity against various types of cancer. However, the mechanisms underlying these properties remain unclear. Based on network pharmacology and molecular docking, this study investigated the molecular mechanism of AE in the treatment of hepatocellular carcinoma (HCC), and evaluated its therapeutic effect through in vitro experiments. Methods: CTD, Pharmmapper, SuperPred and TargetNet were the databases to obtain potential drug-related targets. DisGenet, GeneCards, OMIM and TTD were used to identify potential disease-related targets. Intersection genes for drugs and diseases were obtained through the Venn diagram. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersecting genes were conducted by the website of Bioinformatics. Intersection genes were introduced into STRING to construct a protein-protein interaction network, while the Cytoscape3.9.1 software was used to visualize and analyze the core targets. AutoDock4.2.6 was utilized to achieve molecular docking between drug and core targets. In vitro experiments investigated the therapeutic effects and related mechanisms of AE. Results: 63 overlapped genes were obtained and GO analysis generated 3,646 entries by these 63 intersecting genes. KEGG analysis mainly involved apoptosis, proteoglycans in cancer, TNF signaling pathway, TP53 signaling pathway, PI3K-AKT signaling pathway, etc. AKT1, EGFR, ESR1, TP53, and SRC have been identified as core targets because the binding energies of them between aloe-emodin were less than -5 kcal/Mol.The mRNA and protein expression, prognosis, mutation status, and immune infiltration related to core targets were further revealed. The involvement of AKT1 and EGFR, as well as the key target of the PI3K-AKT signaling pathway, indicated the importance of this signaling pathway in the treatment of HCC using AE. The results of the Cell Counting Kit-8 assay and flow analysis demonstrated the therapeutic effect of AE. The downregulation of EGFR, PI3KR1, AKT1, and BCL2 in mRNA expression and PI3KR1, AKT,p-AKT in protein expression confirmed our hypothesis. Conclusion: Based on network pharmacology and molecular docking, our study initially showed that AE exerted a therapeutic effect on HCC by modulating multiple signaling pathways. Various analyses confirmed the antiproliferative activity and pro-apoptotic effect of AE on HCC through the PI3K-AKT signaling pathway. This study revealed the therapeutic mechanism of AE in the treatment of HCC through a novel approach, providing a theoretical basis for the clinical application of AE.

5.
Materials (Basel) ; 16(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37895624

ABSTRACT

To reduce the noise generated by large mechanical equipment, a stackable and expandable acoustic metamaterial with multiple tortuous channels (SEAM-MTCs) was developed in this study. The proposed SEAM-MTCs consisted of odd panels, even panels, chambers, and a final closing plate, and these component parts could be fabricated separately and then assembled. The influencing factors, including the number of layers N, the thickness of panel t0, the size of square aperture a, and the depth of chamber T0 were investigated using acoustic finite element simulation. The sound absorption mechanism was exhibited by the distributions of the total acoustic energy density at the resonance frequencies. The number of resonance frequencies increased from 13 to 31 with the number of layers N increasing from 2 to 6, and the average sound absorption coefficients in [200 Hz, 6000 Hz] was improved from 0.5169 to 0.6160. The experimental validation of actual sound absorption coefficients in [200 Hz, 1600 Hz] showed excellent consistency with simulation data, which proved the accuracy of the finite element simulation model and the reliability of the analysis of influencing factors. The proposed SEAM-MTCs has great potential in the field of equipment noise reduction.

6.
RNA ; 29(11): 1673-1690, 2023 11.
Article in English | MEDLINE | ID: mdl-37562960

ABSTRACT

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Subject(s)
Ribonucleoprotein, U7 Small Nuclear , Ribonucleoproteins, Small Nuclear , Animals , Ribonucleoprotein, U7 Small Nuclear/chemistry , Methylation , Ribonucleoproteins, Small Nuclear/metabolism , Histones/metabolism , Arginine/chemistry
7.
Materials (Basel) ; 16(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570082

ABSTRACT

The limited occupied space and various noise spectrum requires an adjustable sound absorber with a smart structure and tunable sound absorption performance. The hexagonal acoustic metamaterial cell of the multiple parallel-connection resonators with tunable perforating rate was proposed in this research, which consisted of six triangular cavities and six trapezium cavities, and the perforation rate of each cavity was adjustable by moving the sliding block along the slideway. The optimal geometric parameters were obtained by the joint optimization of the acoustic finite element simulation and cuckoo search algorithm, and the average sound absorption coefficients in the target frequency ranges of 650-1150 Hz, 700-1200 Hz and 700-1000 Hz were up to 0.8565, 0.8615 and 0.8807, respectively. The experimental sample was fabricated by the fused filament fabrication method, and its sound absorption coefficients were further detected by impedance tube detector. The consistency between simulation data and experimental data proved the accuracy of the acoustic finite element simulation model and the effectiveness of the joint optimization method. The tunable sound absorption performance, outstanding low-frequency noise reduction property, extensible outline structure and efficient space utilization were favorable to promote its practical applications in noise reduction.

8.
Clin Transl Gastroenterol ; 14(8): e00612, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37307142

ABSTRACT

INTRODUCTION: Positive correlation between examination time and neoplasm detection using esophagogastroduodenoscopy (EGD) has been described by observational studies, but the effect of setting minimal examination time still requires investigation. METHODS: This prospective, 2-stage, interventional study was conducted in 7 tertiary hospitals in China, enrolling consecutive patients undergoing intravenously sedated diagnostic EGDs. In stage I, the baseline examination time was collected without informing the endoscopists. In stage II, the minimal examination time was set for the same endoscopist according to the median examination time of normal EGDs in stage I. The primary outcome was the focal lesion detection rate (FDR), defined as the proportion of subjects with at least one focal lesion among all subjects. RESULTS: A total of 847 and 1,079 EGDs performed by 21 endoscopists were included in stages I and II, respectively. In stage II, the minimal examination time was set as 6 minutes, and the median time for normal EGD increased from 5.8 to 6.3 minutes ( P < 0.001). Between the 2 stages, the FDR was significantly improved (33.6% vs 39.3%, P = 0.011), and the effect of the intervention was significant (odds ratio, 1.25; 95% confidence interval, 1.03-1.52; P = 0.022) even after adjusting for subjects' age, smoking status, endoscopists' baseline examination time, and working experience. The detection rate of high-risk lesions (neoplastic lesions and advanced atrophic gastritis) was also significantly higher in stage II (3.3% vs 5.4%, P = 0.029). In the endoscopist-level analysis, all practitioners reached a median examination time of 6 minutes, and the coefficients of variation of FDR (36.9%-26.2%) and examination time (19.6%-6.9%) decreased in stage II. DISCUSSION: Setting a 6-minute minimal examination time significantly improved the detection of focal lesions during EGDs and has the potential to be implemented for quality improvement.


Subject(s)
Endoscopy, Gastrointestinal , Upper Gastrointestinal Tract , Humans , Prospective Studies , Tertiary Care Centers , China
9.
Materials (Basel) ; 16(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37374482

ABSTRACT

In order to achieve a balance between sound insulation and ventilation, a novel acoustic metamaterial of air-permeable multiple-parallel-connection folding chambers was proposed in this study that was based on Fano-like interference, and its sound-insulation performance was investigated through acoustic finite element simulation. Each layer of the multiple-parallel-connection folding chambers consisted of a square front panel with many apertures and a corresponding chamber with many cavities, which were able to extend both in the thickness direction and in the plane direction. Parametric analysis was conducted for the number of layers nl and turns nt, the thickness of each layer L2, the inner side lengths of the helical chamber a1, and the interval s among the various cavities. With the parameters of nl = 10, nt = 1, L2 = 10 mm, a1 = 28 mm, and s = 1 mm, there were 21 sound-transmission-loss peaks in the frequency range 200-1600 Hz, and the sound-transmission loss reached 26.05 dB, 26.85 dB, 27.03 dB, and 33.6 dB at the low frequencies 468 Hz, 525 Hz, 560 Hz, and 580 Hz, respectively. Meanwhile, the corresponding open area for air passage reached 55.18%, which yielded a capacity for both efficient ventilation and high selective-sound-insulation performance.

11.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37215023

ABSTRACT

U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.

12.
Materials (Basel) ; 16(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837229

ABSTRACT

A Helmholtz resonator (HR) with an embedded aperture is an effective acoustic metamaterial for noise reduction in the low-frequency range. Its sound absorption property is significantly affected by the aperture shape. Sound absorption properties of HRs with the embedded aperture for various tangent sectional shapes were studied by a two-dimensional acoustic finite element simulation. The sequence of resonance frequency from low to high was olive, common trapeziform, reverse trapeziform, dumbbell and rectangle. Meanwhile, those HRs for various cross-sectional shapes were investigated by a three-dimensional acoustic finite element simulation. The sequence of resonance frequency from low to high were round, regular hexagon, square, regular triangle and regular pentagon. Moreover, the reason for these phenomena was analyzed by the distributions of sound pressure, acoustic velocity and temperature. Furthermore, on the basement of the optimum tangent and cross-sectional shape, the sound absorption property of parallel-connection Helmholtz resonators was optimized. The experimental sample with optimal parameters was fabricated, and its average sound absorption coefficient reached 0.7821 in 500-820 Hz with a limited thickness of 30 mm. The research achievements proved the significance of aperture shape, which provided guidance for the development of sound absorbers in the low-frequency range.

13.
Polymers (Basel) ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36771912

ABSTRACT

The composite rubber reinforced with hollow glass microsphere (HGM) was a promising composite material for noise reduction, and its sound insulation mechanism was studied based on an acoustic finite element simulation to gain the appropriate parameter with certain constraint conditions. The built simulation model included the air domain, polymer domain and inorganic particles domain. The sound insulation mechanism of the composite material was investigated through distributions of the sound pressure and sound pressure level. The influences of the parameters on the sound transmission loss (STL) were researched one by one, such as the densities of the composite rubber and HGM, the acoustic velocities in the polymer and inorganic particle, the frequency of the incident wave, the thickness of the sound insulator, and the diameter, volume ratio and hollow ratio of the HGM. The weighted STL with the 1/3 octave band was treated as the evaluation criterion to compare the sound insulation property with the various parameters. For the limited thicknesses of 1 mm, 2 mm, 3 mm and 4 mm, the corresponding optimal weighted STL of the composite material reached 14.02 dB, 19.88 dB, 22.838 dB and 25.27 dB with the selected parameters, which exhibited an excellent sound insulation performance and could promote the practical applications of the proposed composite rubber reinforced with HGM.

14.
Polymers (Basel) ; 14(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36559802

ABSTRACT

The variable noise spectrum for many actual application scenarios requires a sound absorber to adapt to this variation. An adjustable sound absorber of multiple parallel-connection Helmholtz resonators with tunable apertures (TA-MPCHRs) is prepared by the low-force stereolithography of photopolymer resin, which aims to improve the applicability of the proposed sound absorber for noise with various frequency ranges. The proposed TA-MPCHR metamaterial contains five metamaterial cells. Each metamaterial cell contains nine single Helmholtz resonators. It is treated as a basic structural unit for an array arrangement. The tunable aperture is realized by utilizing four segments of extendable cylindrical chambers with length l0, which indicates that the length of the aperture l is in the range of [l0, 4l0], and that it is tunable. With a certain group of specific parameters for the proposed TA-MPCHR, the influence of the tunable aperture with a variable length is investigated by acoustic finite element simulation with a two-dimensional rotational symmetric model. For the given noise spectrum of certain actual equipment with four operating modes, the TA-MPCHR sample with a limited total thickness of 40 mm is optimized, which is made of photopolymer resin by the low-force stereolithography, and its actual average sound absorption coefficients for the frequency ranges of 500-800 Hz, 550-900 Hz, 600-1000 Hz and 700-1150 Hz reach 0.9203, 0.9202, 0.9436 and 0.9561, respectively. Relative to common non-adjustable metamaterials, the TA-MPCHR made of photopolymer resin can reduce occupied space and improve absorption efficiency, which is favorable in promoting its practical applications in the noise pollution prevention.

15.
Ann Med ; 54(1): 3306-3314, 2022 12.
Article in English | MEDLINE | ID: mdl-36411585

ABSTRACT

BACKGROUND: Linked colour imaging (LCI) is a novel new image-enhanced endoscopy (IEE) technology that produces bright and vivid images. The aim of this study was to assess the ability of LCI to improve the diagnostic accuracy of early gastric cancer (EGC) relative to white light imaging (WLI). MATERIALS AND METHODS: We performed this study on patients undergoing screening endoscopy from 12 medical institutions in China. Patients were randomly assigned to receive WLI followed by LCI or LCI followed by WLI. The primary outcome was to compared the diagnostic accuracy between LCI and WLI for EGC/high-grade intraepithelial neoplasms. Secondary outcomes included the numbers of suspicious lesions, neoplastic lesions and examination time by using LCI detected versus using WLI. RESULTS: A total of 1924 patients were randomly selected, and 1828 were included in the analysis. The diagnostic accuracy for EGC, which was 78.8% by using LCI and 68.4% by using WLI (p < .0001). More suspicious lesions were detected by LCI than by WLI (n = 1235 vs. 1036, p = .031), especially among differentiated EGC (p = .013). LCI greatly shortened the examination time compared with WLI (p = .019). CONCLUSIONS: LCI has better accuracy and shorter examination time in diagnosing EGC than WLI (Clinical trial registration: NCT03092414).Key messagesCompared with white light imaging (WLI), the diagnostic accuracy, sensitivity and specificity increased by using LCI.More lesions were detected by LCI alone than by WLI alone, especially among differentiated EGC.LCI may be used as a screening tool for routine clinical observation.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/pathology , Color , Prospective Studies , Early Detection of Cancer , Light
16.
Materials (Basel) ; 15(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234084

ABSTRACT

The mechanical properties of resin samples in low-force stereolithography additive manufacturing were affected by the printing orientation, and were investigated and optimized to achieve excellent single or comprehensive tensile strength, compressive strength, and flexural modulus. The resin samples were fabricated using a Form3 3D printer based on light curing technology according to the corresponding national standards, and they were detected using a universal testing machine to test their mechanical properties. The influence of the printing orientation was represented by the rotation angle of the resin samples relative to the x-axis, y-axis and z-axis, and the parameters was selected in the range 0°-90° with an interval of 30°. The multiple regression models for the mechanical properties of the prepared resin samples were obtained based on least square estimation, which offered a foundation from which to optimize the parameters of the printing orientation by cuckoo search algorithm. The optimal parameters for the tensile strength, compressive strength and flexural modulus were 'α = 45°, ß = 25°, γ = 90°', 'ß = 0°, ß = 51°, γ = 85°' and 'α = 26°, ß = 0°, γ = 90°', respectively, which obtained the improvements of 80.52%, 15.94%, and 48.85%, respectively, relative to the worst conditions. The mechanism was qualitatively discussed based on the force analysis. The achievements obtained in this study proved that optimization of the printing orientation could improve the mechanical properties of the fabricated sample, which provided a reference for all additive manufacturing methods.

17.
Materials (Basel) ; 15(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36079319

ABSTRACT

For the common difficulties of noise control in a low frequency region, an adjustable parallel Helmholtz acoustic metamaterial (APH-AM) was developed to gain broad sound absorption band by introducing multiple resonant chambers to enlarge the absorption bandwidth and tuning length of rear cavity for each chamber. Based on the coupling analysis of double resonators, the generation mechanism of broad sound absorption by adjusting the structural parameters was analyzed, which provided a foundation for the development of APH-AM with tunable chambers. Different from other optimization designs by theoretical modeling or finite element simulation, the adjustment of sound absorption performance for the proposed APH-AM could be directly conducted in transfer function tube measurement by changing the length of rear cavity for each chamber. According to optimization process of APH-AM, The target for all sound absorption coefficients above 0.9 was achieved in 602-1287 Hz with normal incidence and that for all sound absorption coefficients above 0.85 was obtained in 618-1482 Hz. The distributions of sound pressure for peak absorption frequency points were obtained in the finite element simulation, which could exhibit its sound absorption mechanism. Meanwhile, the sound absorption performance of the APH-AM with larger length of the aperture and that with smaller diameter of the aperture were discussed by finite element simulation, which could further show the potential of APH-AM in the low-frequency sound absorption. The proposed APH-AM could improve efficiency and accuracy in adjusting sound absorption performance purposefully, which would promote its practical application in low-frequency noise control.

18.
Materials (Basel) ; 15(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36143762

ABSTRACT

To achieve the broadband sound absorption at low frequencies within a limited space, an optimal design of joint simulation method incorporating the finite element simulation and cuckoo search algorithm was proposed. An acoustic metamaterial of multiple parallel hexagonal Helmholtz resonators with sub-wavelength dimensions was designed and optimized in this research. First, the initial geometric parameters of the investigated acoustic metamaterials were confirmed according to the actual noise reduction requirements to reduce the optimization burden and improve the optimization efficiency. Then, the acoustic metamaterial with the various depths of the necks was optimized by the joint simulation method, which combined the finite element simulation and the cuckoo search algorithm. The experimental sample was prepared using the 3D printer according to the obtained optimal parameters. The simulation results and experimental results exhibited excellent consistency. Compared with the derived sound absorption coefficients by theoretical modeling, those achieved in the finite element simulation were closer to the experimental results, which also verified the accuracy of this optimal design method. The results proved that the optimal design method was applicable to the achievement of broadband sound absorption with different low frequency ranges, which provided a novel method for the development and application of acoustic metamaterials.

19.
Scanning ; 2022: 6919130, 2022.
Article in English | MEDLINE | ID: mdl-36016671

ABSTRACT

To analyze the effect of comprehensive nursing intervention based on ERAS's concept in laparoscopic gallbladder polyp (GP) surgery on patients' postoperative quality of life and nursing job satisfaction. Ninety patients with polyps were included in this article until October 2021. In this format, the 45 cases are divided into governing bodies and committees according to their processing time. As recommended by the ERAS committee, the committee provides daily and patient care, as well as training on the WeChat platform. The pain level (visual analogue scale (VAS) score), the quality of life (life quality index (GLQI) score), and the incidence of complications were compared between the two groups before and after the intervention. The VAS score of the control group at 2 h after operation was lower than that of the control group, and the difference was statistically significant (P < 0.05). After the intervention, the GLQI scores of the two groups were higher than those before the intervention, and the GLQI scores of the control group were higher than those of the control group, with significant differences (all P < 0.05). Studies have shown that comprehensive nursing intervention applied to patients with gallbladder polyps can reduce postoperative pain with less complications and can also improve nursing satisfaction, which is worthy of clinical promotion.


Subject(s)
Gallbladder , Quality of Life , Humans , Recovery of Function
20.
Environ Res ; 214(Pt 3): 113953, 2022 11.
Article in English | MEDLINE | ID: mdl-35934147

ABSTRACT

A popular approach to select optimal adsorbents is to perform parallel experiments on adsorbents based on an initially decided goal such as specified product purity, efficiency, or binding capacity. To screen optimal adsorbents, we focused on the max adsorption capacity of the candidates at equilibrium in this work because the adsorption capacity of each adsorbent is strongly dependent on certain conditions. A data-driven machine learning tool for predicting the max adsorption capacity (Qm) of 19 pharmaceutical compounds on 88 biochars was developed. The range of values of Qm (mean 48.29 mg/g) was remarkably large, with a high number of outliers and large variability. Modified biochars enhanced the Qm and surface area values compared with the original biochar, with a statistically significant difference (Chi-square value = 7.21-18.25, P < 0.005). K- nearest neighbors (KNN) was found to be the most optimal algorithm with a root mean square error (RMSE) of 23.48 followed by random forest and Cubist with RMSE of 26.91 and 29.56, respectively, whereas linear regression and regularization were the worst algorithms. KNN model achieved R2 of 0.92 and RMSE of 16.62 for the testing data. A web app was developed to facilitate the use of the KNN model, providing a reliable solution for saving time and money in unnecessary lab-scale adsorption experiments while selecting appropriate biochars for pharmaceutical adsorption.


Subject(s)
Water Pollutants, Chemical , Water , Adsorption , Charcoal , Machine Learning , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...