Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
BMC Genomics ; 25(1): 447, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714941

ABSTRACT

BACKGROUND: The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS: Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION: The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.


Subject(s)
Adenosine , Sexual Maturation , Testis , Animals , Male , Testis/metabolism , Testis/growth & development , Adenosine/analogs & derivatives , Adenosine/metabolism , Swine/genetics , Sexual Maturation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methylation , Gene Expression Regulation, Developmental , Signal Transduction , Gene Expression Profiling
2.
Phytomedicine ; 130: 155761, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38797031

ABSTRACT

BACKGROUND: Quercetin has received extensive attention for its therapeutic potential treating respiratory syncytial virus (RSV) infection diseases. Recent studies have highlighted quercetin's ability of suppressing alveolar macrophages (AMs)-derived lung inflammation. However, the anti-inflammatory mechanism of quercetin against RSV infection still remains elusive. PURPOSE: This study aims to elucidate the mechanism about quercetin anti-inflammatory effect on RSV infection. METHODS: BALB/c mice were intranasally infected with RSV and received quercetin (30, 60, 120 mg/kg/d) orally for 3 days. Additionally, an in vitro infection model utilizing mouse alveolar macrophages (MH-S cells) was employed to validate the proposed mechanism. RESULTS: Quercetin exhibited a downregulatory effect on glycolysis and tricarboxylic acid (TCA) cycle metabolism in RSV-infected AMs. However, it increased itaconic acid production, a metabolite derived from citrate through activating immune responsive gene 1 (IRG1), and further inhibiting succinate dehydrogenase (SDH) activity. While the suppression of SDH activity orchestrated a cascading downregulation of Hif-1α/NLRP3 signaling, ultimately causing AMs polarization from M1 to M2 phenotypes. CONCLUSION: Our study demonstrated quercetin stimulated IRG1-mediated itaconic acid anabolism and further inhibited SDH/Hif-1α/NLRP3 signaling pathway, which led to M1 to M2 polarization of AMs so as to ameliorate RSV-induced lung inflammation.

3.
Curr Med Sci ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789819

ABSTRACT

OBJECTIVE: Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis. Early-stage liver fibrosis is reversible and intimately associated with the state of HSCs. Kruppel-like factor 4 (KLF4) plays a pivotal role in a wide array of physiological and pathological processes. This study aimed to investigate the effect of KLF4 on the proliferation, apoptosis and phenotype of quiescent HSCs METHODS: We designed a KLF4 lentiviral vector and a KLF4 siRNA lentiviral vector, to upregulate and silence KLF4 expression in human HSC LX-2 cells via transfection. Cell proliferation was assessed using the CCK-8 assay. Flow cytometry was used to detect the cell cycle distribution and apoptosis rate. Western blotting was used to determine the levels of some quiescence and activation markers of HSCs RESULTS: Overexpression of KLF4 significantly increased the levels of E-cadherin and ZO-1, which are quiescent HSC markers, while significantly decreased the levels of N-cadherin and a-SMA, known activated HSC markers. In contrast, cell proliferation and apoptosis rates were elevated in LX-2 cells in which KLF4 expression was silenced CONCLUSION: KLF4 inhibits the proliferation and activation of human LX-2 HSCs. It might be a key regulatory protein in the maintenance of HSC quiescence and may serve as a target for the inhibition of hepatic fibrosis.

4.
Biomed Pharmacother ; 175: 116657, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38688171

ABSTRACT

Melanoma is a prevalent malignant skin tumor known for its high invasive ability and a high rate of metastasis, making clinical treatment exceptionally challenging. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and play a crucial role in tumor survival and development. Cold atmospheric plasma (CAP) is an emerging tool for tumor treatment that has garnered attention from scholars due to its interaction with non-tumor cells in the tumor microenvironment. Here, we used the macrophage lines THP-1 and RAW264.7, as well as the melanoma cell lines A375 and MV3, as research subjects to investigate the effect of plasma-activated liquid (PAL) on macrophage differentiation and its inhibitory effect on melanoma cell proliferation. We confirmed that the killing effect of PAL on melanoma cells was selective. Using flow cytometry and PCR, we discovered that PAL can influence macrophage differentiation. Through in vitro cell coculture, we demonstrated that PAL-treated macrophages can significantly impede tumor cell development and progression, and the effect is more potent than that of PAL directly targeting tumor cells. Furthermore, we have proposed the hypothesis that PAL promotes the differentiation of macrophages into the M1 type through the ROS/JAK2/STAT1 pathway. To test the hypothesis, we employed catalase and fludarabine to block different sites of the pathway. The results were then validated through Western Blot, qPCR and ELISA. This study illustrates that PAL therapy is an effective tumor immunotherapy and expands the scope of tumor immunotherapy. Furthermore, these findings establish a theoretical foundation for potential clinical applications of PAL.

5.
Heliyon ; 10(8): e29225, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638956

ABSTRACT

Preeclampsia (PE) is one of the most common complications of pregnancy and polycystic ovary syndrome (PCOS) is a prevalent metabolic and endocrinopathy disorder in women of reproductive age. Identifying the shared genetic signatures and molecular mechanisms between PCOS and PE was the objective of this study. The intersections of WGCNA module genes, PPI module genes, and PPI hub genes revealed that 8 immunity-related genes might be shared causative genes of PE and PCOS. Further, qRT-PCR results showed that TSIX/miR-223-3p/DDX58 might play a crucial role in immune dysregulation in PE and PCOS and Spearman rank correlation analysis results illustrated the potential of DDX58 as a novel diagnostic and therapeutic target for PE and PCOS. Our study demonstrated a common disease pathway model TSIX/miR-223-3p/DDX58, illustrating that immune dysregulation may be a possible mechanism of PE and PCOS, and revealed that DDX58 might be a novel predictive target for PE and PCOS.

6.
Opt Express ; 32(7): 11737-11750, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571014

ABSTRACT

This paper provides an extensive discussion of a complex amplitude-based dynamic three-dimensional deformation measurement method, in which the phase and amplitude of the speckle field are used for out-of-plane and in-plane deformation calculation respectively. By determining the optimal polarization states of the speckle field and reference field from the comprehensive analysis of measurement mathematical model in the principle of polarization multiplexing, the 3-step phase-shifting interferograms and one speckle gram can be directly recorded by a polarization camera in a single shot. The out-of-plane deformation would be recovered from the subtraction of speckle phases that are demodulated by a special least square algorithm; speckle gram with improved quality is offered for correlation computation to obtain in-plane deformation. The advancement and significance of the optimized strategy are intuitively demonstrated by comparing the measurement accuracy under different combinations of polarization states. Finally, the dynamic thermal deformation experiment reveals the potential in practical real-time applications.

7.
Genes (Basel) ; 15(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540443

ABSTRACT

The RNA-Seq and gene expression data of mature leaves under high temperature stress of Paeonia suffruticosa 'Hu Hong' were used to explore the key genes of heat tolerance of peony. The weighted gene co-expression network analysis (WGCNA) method was used to construct the network, and the main modules and core genes of co-expression were screened according to the results of gene expression and module function enrichment analysis. According to the correlation of gene expression, the network was divided into 19 modules. By analyzing the expression patterns of each module gene, Blue, Salmon and Yellow were identified as the key modules of peony heat response related functions. GO and KEGG functional enrichment analysis was performed on the genes in the three modules and a network diagram was constructed. Based on this, two key genes PsWRKY53 (TRINITY_DN60998_c1_g2, TRINITY_DN71537_c0_g1) and PsHsfB2b (TRINITY_DN56794_c0_g1) were excavated, which may play a key role in the heat shock response of peony. The three co-expression modules and two key genes were helpful to further elucidate the heat resistance mechanism of P. suffruticosa 'Hu Hong'.


Subject(s)
Paeonia , Paeonia/genetics , Gene Expression Profiling , Plant Leaves/genetics , RNA-Seq
8.
J Invest Dermatol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38462125

ABSTRACT

The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes (KCs). KCs and melanocytes respond to UV exposure by eliciting a tanning response. However, how KCs and melanocytes interact in the absence of UV exposure is unknown. In this study, we demonstrate that after SPRY1 knockout in epidermal KCs, melanocyte stem cells in the hair follicle exit the niche without depleting the pool of these cells. We also found that melanocyte stem cells migrate to the epidermis in a p53/stem cell factor/C-KIT-dependent manner induced by a tanning-like response resulting from SPRY1 loss in epidermal KCs. Once there, these cells differentiate into functional melanocytes. These findings provide an example in which the migration of melanocyte stem cells to the epidermis is due to loss of SPRY1 in epidermal KCs and show the potential for developing therapies for skin pigmentation disorders by manipulating melanocyte stem cells.

9.
J Phys Chem A ; 128(15): 3024-3032, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38484711

ABSTRACT

Molecular vibrational frequency analysis plays an important role in theoretical and computational chemistry. However, in many cases, the analytical frequencies are unavailable, whereas frequency calculations using conventional numerical methods are very expensive. In this work, we propose an efficient method to numerically calculate the frequencies. Our main strategies are to exploit the sparseness of the Hessian matrix and to construct the N-fold two-variable potential energy surfaces to fit the parabola parameters, which are later used for the construction of Hessian matrices. A set of benchmark calculations is performed for typical molecules of different sizes and complexities using the proposed method. The obtained frequencies are compared to those calculated with the analytical methods and conventional numerical methods. It is shown that the results yielded with the new method are in very good agreement with corresponding accurate values (with a maximum error of ∼20 cm-1), while the required computation resource is largely reduced compared to that required by conventional numerical methods. For medium-sized molecules, the calculational scaling is lowered to O(N1.6) (this work) from that of O(N2) (conventional numerical methods). For even larger molecules, more computational savings can be achieved, and the scaling is estimated to be quasilinear with respect to the molecular size.

10.
BMC Pregnancy Childbirth ; 24(1): 160, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395789

ABSTRACT

BACKGROUND: Elevated maternal serum uric acid (UA) levels were associated with adverse perinatal outcomes. This study aimed to examine the association between UA and the risk of low birth weight (LBW) / small for gestational age (SGA). METHODS: A cohort study of women delivered in Shanghai maternity hospital was included between 2017 and 2021. Electronic medical records were utilized to extract information and antenatal care records. The cut-off value of UA was 360 µmol/L. The outcome was LBW/SGA, with LBW defined as birth weight below 2500 g and SGA indicating birth weight below the 10th percentile of average weight for gestational age. The assessment of SGA was based on the Chinese standard curve for birth weight at various gestational ages. Univariate, multivariate logistic regression models, restricted cubic spline were used in this study, with adjustments made for confounding factors. RESULTS: Sixty-nine thousand six hundred seventy-four live births and singleton pregnancies were included. The ratio of LBW/SGA was 3.3%/9%. Maternal UA levels were significantly negatively correlated with birth weight. High UA levels were associated with high risk of LBW/SGA, especially in third trimester. In BMI < 25 group, the risk of LBW increased to 2.35-fold (95%CI, 1.66-3.31) in hyperuricemic group (UA > 360 µmol/L). The SGA risk was 1.66-fold (95%CI, 1.37-2.00). Gestational hypertension (GH) with hyperuricemica increased the risk of LBW (aOR = 4.00, 95%CI, 2.01-7.93) and SGA (aOR = 2.63, 95%CI, 1.83-3.78). Preeclampsia (PE) with hyperuricemia increased the risk of LBW (aOR = 1.38, 95%CI, 0.63-3.03) and SGA (aOR = 1.81, 95%CI, 1.18-2.78). In delivery gestational week (DGW) ≥ 37 group, if UA > 360 µmol/L, the incidence of LBW increased to 2.46-fold (95%CI, 1.62, 3.73) and the incidence of SGA increased to 1.52-fold (95%CI, 1.24, 1.87). In DGW < 37 group, if UA > 360 µmol/L, the incidence of LBW increased to 2.70-fold (95%CI, 1.92, 3.80) and the incidence of SGA increased to 2.13-fold(95%CI, 1.50, 3.02). CONCLUSIONS: The study found an inverse correlation between UA levels and birth weight. High UA levels were associated with increased risk of LBW/SGA, particularly in third trimester. GH or PE complicated by hyperuricemia were found to have significantly higher risk of developing LBW/SGA. This relationship also existed in pregnant women with BMI < 25.


Subject(s)
Hypertension, Pregnancy-Induced , Hyperuricemia , Premature Birth , Infant, Newborn , Female , Pregnancy , Humans , Uric Acid , Birth Weight , Infant, Small for Gestational Age , Cohort Studies , Retrospective Studies , Hyperuricemia/epidemiology , China/epidemiology , Infant, Low Birth Weight , Premature Birth/epidemiology
11.
Food Chem ; 443: 138537, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38309027

ABSTRACT

Aflatoxin B1 (AFB1) can accumulate in different organs or tissues and seriously harm humans. Traditional magnetic relaxation switching (MRS) sensors have relatively low sensitivity, but are complex to use. Rapid small-trace molecule analysis in complex samples is challenging. In this study, we used a gadolinium-based metal-organic framework (Gd-MOF) and ultra-small superparamagnetic iron oxide (USPIO) assembly to develop a magnetic resonance tuning-magnetic relaxation switching (MRET-MRS) sensor to improve conventional MRS sensor sensitivity and simplify operational steps in complex samples. Importantly, the local magnetic field generated by USPIO interfered with Gd-MOF electron spin fluctuation and directly affected dipole-dipole interactions between Gd electrons and water molecules, thus rendering relaxation signal changes more sensitive. The sensitivity (0.54 pg mL-1) was 833 times more sensitive than that of a conventional MRS sensor (0.45 ng mL-1). Finally, a convenient one-step detection approach can be achieved by mixing antigen/antibody functionalized Gd-MOF/USPIO and target samples.


Subject(s)
Dextrans , Magnetite Nanoparticles , Metal-Organic Frameworks , Humans , Gadolinium , Aflatoxin B1 , Magnetic Resonance Spectroscopy
12.
Sci Data ; 11(1): 126, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272931

ABSTRACT

Hippophae gyantsensis, which is a native tree species in China, is ideal for windbreak and sand-fixing forests. It is an economically and ecologically valuable tree species distributed exclusively in the Qinghai-Tibet Plateau in China. In our study, we assembled a chromosome-level genome of H. gyantsensis using Illumina sequencing, Nanopore sequencing and chromosome structure capture technique. The genome was 716.32 Mb in size with scaffold N50 length of 64.84 Mb. A total of 716.25 Mb genome data was anchored and orientated onto 12 chromosomes with a mounting rate of up to 99.99%. Additionally, the genome was found to comprise approximately 56.84% repeat sequences, of which long terminal repeats(LTRs) that accounted for 33.19% of the entire genome. Meanwhile, a total of 32,316 protein-coding genes were predicted, and 91.07% of these genes were functionally annotated. We also completed a series of comparative genomic analyses to provide researchers with useful reference material for future studies on seabuckthorn.


Subject(s)
Genome, Plant , Hippophae , China , Chromosomes , Hippophae/genetics , Molecular Sequence Annotation , Phylogeny , Repetitive Sequences, Nucleic Acid
13.
Diabetes Obes Metab ; 26(4): 1430-1442, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38229447

ABSTRACT

Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, ß3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.


Subject(s)
Electroacupuncture , Mice , Animals , Sympathetic Nervous System/physiology , Obesity/therapy , Obesity/metabolism , Adipose Tissue, White , Adipose Tissue, Brown/metabolism , Thermogenesis , Sense Organs
14.
J Invest Dermatol ; 144(4): 774-785.e10, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37827278

ABSTRACT

Psoriasis is characterized by excessive keratinocyte proliferation and immunocyte infiltration, but the underlying pathogenesis remains unclear. Aminoacyl-tRNA synthetases are universally expressed enzymes that catalyze the first step of protein synthesis. Glycyl-tRNA synthetase (GARS) is a member of the aminoacyl-tRNA synthetase family. In addition to its canonical function, we found that GARS was overexpressed in the serum and skin lesions of patients with psoriasis. Moreover, GARS was highly expressed in human skin keratinocytes, and GARS knockdown in keratinocytes suppressed cell proliferation and promoted apoptosis through NF-κB/MAPK signaling pathway. Moreover, intradermal injection of recombinant GARS protein caused skin thickening, angiogenesis, and IFN/TNF-driven skin inflammation. Intriguingly, the reported functional receptor for GARS, cadherin 6 (CDH6), was specifically expressed in vascular endothelial cells, and we found that keratinocyte-derived GARS promotes inflammation and angiogenesis of vascular endothelial cells through CDH6. In addition, intradermal injection of GARS aggravated the phenotype and angiogenesis in imiquimod-induced psoriasiform dermatitis models, whereas the psoriatic phenotype and angiogenesis were relieved after knockdown of GARS by adeno-associated virus. Taken together, the results of this study identify the critical role of GARS in the pathogenesis of psoriasis and suggest that blocking GARS may be a therapeutic approach for alleviating psoriasis.


Subject(s)
Dermatitis , Glycine-tRNA Ligase , Psoriasis , Humans , Angiogenesis , Dermatitis/pathology , Endothelial Cells/pathology , Glycine-tRNA Ligase/genetics , Glycine-tRNA Ligase/metabolism , Inflammation/pathology , Keratinocytes/metabolism , Psoriasis/pathology , Skin/pathology
15.
Brain Res ; 1825: 148710, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38103878

ABSTRACT

Long-term high-fat diet (HFD) in adolescents leads to impaired hippocampal function and increases the risk of cognitive impairment. Studies have shown that HFD activates hippocampal microglia and induces hippocampal inflammation, which is an important factor for cognitive impairment. Electroacupuncture stimulation (ES), a nerve stimulation therapy, is anti-inflammatory. This study explored its therapeutic potential and mechanism of action in obesity-related cognitive impairment. 4-week-old C57 mice were given either normal or HFD for 22 weeks. At 19 weeks, some of the HFD mice were treated with ES and nigericin sodium salt. The cognitive behavior was assessed through Morris water maze test at 23 weeks. Western blotting was used to detect the expression levels of pro-inflammatory molecules IL-1ß and IL-1R, synaptic plasticity related proteins synaptophysin and Postsynaptic Density-95 (PSD-95), and apoptotic molecules (Caspase-3 and Bcl-2), in the hippocampus. The number, morphology, and status of microglia, along with the brain-derived neurotrophic factor(BDNF) content, were analyzed using immunofluorescence. ES treatment improved cognitive deficits in HFD model mice, and decreased the expressions of microglial activation marker, CD68, and microglial BDNF. Inhibition of proinflammatory cytokine, IL-1ß, and IL-1R promoted PSD-95 and synaptophysin expressions. Peripheral NLRP3 inflammasome agonist injections exacerbated the cognitive deficits in HFD mice and promoted the expressions of IL-1ß and IL-1R in the hippocampus. The microglia showed obvious morphological damage and apoptosis. Collectively, our findings suggest that ES inhibits inflammation, regulates microglial BDNF, and causes remodeling of hippocampal function in mice to counteract obesity-like induced cognitive impairment. Overexcitation of peripheral inflammasome complexes induces hippocampal microglia apoptosis, which hinders the effects of ES.


Subject(s)
Cognitive Dysfunction , Electroacupuncture , Mice , Animals , Synaptophysin/metabolism , Microglia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Diet, High-Fat/adverse effects , Inflammasomes/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/drug therapy , Obesity/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
16.
Clin Hypertens ; 29(1): 32, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38037134

ABSTRACT

BACKGROUND: In all studies conducted so far, there was no report about the correlation between excessive gestational weight gain (GWG) and the risk of preeclampsia (PE) in multiparas, especially considering that multiparity is a protective factor for both excessive GWG and PE. Thus, the aim of this retrospective cohort study was to determine whether GWG of multiparas is associated with the increased risk of PE. METHODS: This was a study with 15,541 multiparous women who delivered in a maternity hospital in Shanghai from 2017 to 2021, stratified by early-pregnancy body mass index (BMI) category. Early-pregnancy body weight, height, week-specific and total gestational weight gain as well as records of antenatal care were extracted using electronic medical records, and antenatal weight gain measurements were standardized into gestational age-specific z scores. RESULTS: Among these 15,541 multiparous women, 534 (3.44%) developed preeclampsia. The odds of preeclampsia increased by 26% with every 1 z score increase in pregnancy weight gain among normal weight women and by 41% among overweight or obese women. For normal weight women, pregnant women with preeclampsia gained more weight than pregnant women without preeclampsia beginning at 25 weeks of gestation, while accelerated weight gain was more obvious in overweight or obese women after 25 weeks of gestation. CONCLUSIONS: In conclusion, excessive GWG in normal weight and overweight or obese multiparas was strongly associated with the increased risk of preeclampsia. In parallel, the appropriate management and control of weight gain, especially in the second and third trimesters, may lower the risk of developing preeclampsia.

17.
Heliyon ; 9(12): e23116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144323

ABSTRACT

Background: Cold atmospheric plasma (CAP) is an effective treatment for various skin diseases. Plasma-activated solution (PAS) is an indirect method of CAP treatment that produces biological effects similar to those of direct treatment with plasma devices. The anticancer and bacteriostatic effects of PAS have been demonstrated in vitro experiments; however, on the basis of the lack of toxicological studies on PAS, its effects on living mammals when administered by subcutaneous injection is poorly known. Purpose: The purpose of this study was to evaluate the effects of PAS on local skin tissue cells, blood system, heart, liver, lungs, kidneys and other vital organs of the rat when injected subcutaneously. Methods: PAS was prepared by CAP irradiation of phosphate-buffered saline (PBS). PBS and different PBS groups (CAP irradiation for 1, 3, or 5 min) were injected subcutaneously once every 48 h. The rats were euthanized immediately after 10 cycles of therapy. Results: No adverse effects were observed during the entire period of the experiment. Histopathological examination of organs and tissues revealed no structural changes. Moreover, no obvious structural changes were observed in skin tissue. DNA damage and cancerous proliferative changes were not detected in skin tissue treated with PAS. Subsequently, RNA sequencing and western blotting were performed. The results showed that PAS increased the expression of growth factors like transforming growth factor beta (TGF-ß) and vascular endothelial growth factor A (VEGFA). These results might be directly linked to the role of PAS in stimulating TGF-ß receptor signaling pathway and angiogenesis. Conclusion: The results showed that multiple subcutaneous injections of PAS did not show significant toxic side effects on local skin tissues and some vital organs in rats, providing a scientific basis to support the future treatment of skin diseases with PAS.

18.
J Am Chem Soc ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37931244

ABSTRACT

The development of a controlled ring-opening polymerization (ROP) method for synthesizing backbone-functionalized and sequence-controlled polymers with well-defined architectures from macrocyclic monomers is highly desirable in polymer chemistry. Herein, we developed a novel general controlled ROP of macrocycles for producing backbone functional and sequence-controlled polyurethanes and polyamides with controlled molecular weights and narrow dispersities (D < 1.1). The key to this method is the introduction of a trimethyl lock unit, an efficient cyclization-based self-immolative spacer, into the macrocyclic monomer ring as a "ring-opening trigger." ROP is initiated by the attack of a primary amine nucleophile on the ring-activated carbonate/ester group, leading to the ring opening of the macrocyclic monomer. Subsequently, spontaneous 6-exo-trig cyclization of the trimethyl lock unit occurs, detaching this ring-opening trigger and regenerating the primary amine end group. The regenerated primary amine group can then be used to propagate the polymer chain by iterating the ring-opening-ring-closing cascade reaction. The versatile ROP method can be applied in the synthesis of water-soluble polyurethanes, backbone-degradable polyurethanes and poly(ester amide)s, and sequence-controlled poly(amino acid)s with well-defined macromolecular architectures.

19.
BMC Biol ; 21(1): 244, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37926805

ABSTRACT

BACKGROUND: Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples. By integrating Illumina-based sequencing short reads, we identified the genes exhibiting the most significant differential expression between sporophylls and trophophylls. RESULTS: The long reads were assembled, resulting in a total of 24,024 gene models. The differential expressed genes between heteroblasty primarily involved reproduction and cell wall composition, with a particular focus on expansin genes. Reconstructing the phylogeny of expansin genes across 19 plant species, ranging from green algae to seed plants, we identified four ortholog groups for expansins. The observed high expression of expansin genes in the young sporophylls of C. chingii emphasizes their role in the development of heteroblastic leaves. Through gene coexpression analysis, we identified highly divergent expressions of expansin genes both within and between species. CONCLUSIONS: The specific regulatory interactions and accompanying expression patterns of expansin genes are associated with variations in leaf shapes between sporophylls and trophophylls.


Subject(s)
Cell Wall , Fertility , Phylogeny , Plant Leaves/genetics , Reproduction , Plant Proteins/genetics , Gene Expression Regulation, Plant
20.
Ibrain ; 9(3): 326-339, 2023.
Article in English | MEDLINE | ID: mdl-37786754

ABSTRACT

Cerebral ischemia is a serious cerebrovascular disease with the characteristics of high morbidity, disability, and mortality. Currently, stem cell therapy has been extensively applied to a wide range of diseases, including neurological disorders, autoimmune deficits, and other diseases. Transplantation therapy with neural stem cells (NSCs) is a very promising treatment method, which not only has anti-inflammatory, antiapoptotic, promoting angiogenesis, and neurogenesis effects, but also can improve some side effects related to thrombolytic therapy. NSCs treatment could exert protective effects in alleviating cerebral ischemia-induced brain damage and neurological dysfunctions. However, the different injection routes and doses of NSCs determine diverse therapeutic efficacy. This review mainly summarizes the various injection methods and injection effects of NSCs in cerebral ischemia, as well as proposes the existing problems and prospects of NSCs transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...