Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 683
Filter
1.
Angew Chem Int Ed Engl ; : e202405228, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744669

ABSTRACT

Nacre is a classic model, providing an inspiration for fabricating high-performance bulk nanocomposites with the two-dimensional platelets. However, the "brick" of nacre, aragonite platelet, is an ideal building block for making high-performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~ 282 MPa and ~ 6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self-monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high-performance artificial nacre, provides an avenue for fabricating high-performance bulk nanocomposites through the sustainable reutilization of shell resources.

2.
Free Radic Biol Med ; 220: 139-153, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705495

ABSTRACT

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.

3.
Front Nutr ; 11: 1367589, 2024.
Article in English | MEDLINE | ID: mdl-38706565

ABSTRACT

Introduction: Taurine has a prominent lipid-lowering effect on hyperlipidemia. However, a comprehensive analysis of the effects of taurine on endogenous metabolites in hyperlipidemia has not been documented. This study aimed to explore the impact of taurine on multiple metabolites associated with hyperlipidemia. Methods: The hyperlipidemic mouse model was induced by high-fat diet (HFD). Taurine was administered via oral gavage at doses of 700 mg/kg/day for 14 weeks. Evaluation of body weight, serum lipid levels, and histopathology of the liver and adipose tissue was performed to confirm the lipid-lowering effect of taurine. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics analyses of serum, urine, feces, and liver, coupled with multivariate data analysis, were conducted to assess changes in the endogenous metabolites. Results and discussion: Biochemical and histological examinations demonstrated that taurine administration prevented weight gain and dyslipidemia, and alleviated lipid deposition in the liver and adipose tissue in hyperlipidemic mice. A total of 76 differential metabolites were identified by UPLC-MS-based metabolomics approach, mainly involving BAs, GPs, SMs, DGs, TGs, PUFAs and amino acids. Taurine was found to partially prevent HFDinduced abnormalities in the aforementioned metabolites. Using KEGG database and MetaboAnalyst software, it was determined that taurine effectively alleviates metabolic abnormalities caused by HFD, including fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, diacylglycerol metabolism, amino acid metabolism, bile acid and taurine metabolism, taurine and hypotaurine metabolism. Moreover, DGs, GPs and SMs, and taurine itself may serve as active metabolites in facilitating various anti-hyperlipidemia signal pathways associated with taurine. This study provides new evidence for taurine to prevent hyperlipidemia.

4.
Article in English | MEDLINE | ID: mdl-38692477

ABSTRACT

OBJECTIVE: Our previous study demonstrated that modified subxiphoid VATS thymectomy (mSVT) with an auxiliary sternal retractor is feasible for locally invasive thymic malignancies. This study aimed to compare perioperative and oncological outcomes of mSVT versus median sternotomy thymectomy (MST) for locally advanced thymic malignancies. METHODS: In total, 221 patients of T2-3 thymic malignancies who underwent mSVT or MST between 2015 and 2020 were enrolled in our prospectively maintained database. A 1:1 propensity score-matching analysis was performed to balance the bias. Surgical difficulty was evaluated by a modified resection index. Perioperative and oncological results were compared between mSVT and MST groups. RESULTS: There were 72 patients in each group in the final analysis. Our results showed that the mSVT group had a shorter operative duration (98 vs. 129 min, P<0.001), less blood loss (40 vs.100 mL, P<0.001), shorter drainage duration (3 vs. 5 days, P<0.001), shorter length of hospital stay (5 vs. 6 days, P<0.001) and fewer postoperative complications (5.6% vs. 23.6%; P=0.005). No significant difference was detected in complete resection (98.6% vs. 98.6%, P =0.001) between the two groups. Conversion occurred in 5/106 (4.7%). Survival analyses indicated similar recurrence-free survival (HR=0.94; 95% CI: 0.40-2.20; p=0.883) and overall survival (HR=0.52; 95% CI: 0.05-5.02; p=0.590) between the two groups. CONCLUSION: The mSVT was safe and effective for T2-3 thymic malignancies and could be an alternative for selected patients with locally advanced thymic diseases. Further prospective studies are needed to evaluate the long-term survival of modified subxiphoid approach thoracoscopic thymectomy.

5.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580121

ABSTRACT

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Subject(s)
Anthozoa , Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Animals , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Organophosphates/analysis , Organophosphates/metabolism , Esters/analysis , Bioaccumulation , Seawater/chemistry , Coral Reefs
6.
Front Microbiol ; 15: 1378311, 2024.
Article in English | MEDLINE | ID: mdl-38646627

ABSTRACT

Objective: The impact of hepatitis B virus (HBV) on the risk of type 2 diabetes (T2D) remains a controversial topic. This study aims to analyze the causal relationship between HBV and T2D using Mendelian randomization (MR). Methods: Single nucleotide polymorphisms on chronic hepatitis B (CHB), liver fibrosis, liver cirrhosis, and T2D were obtained from BioBank Japan Project, European Bioinformatics Institute, and FinnGen. Mendelian randomization was utilized to evaluate exposure-outcome causality. Inverse variance weighted was used as the primary method for MR analysis. To assess horizontal pleiotropy and heterogeneity, we conducted MR-Egger intercept analysis and Cochran's Q test, and the robustness of the MR analysis results was evaluated through leave-one-out sensitivity analysis. Results: MR analysis revealed that CHB was associated with a decreased genetic susceptibility to T2D (OR, 0.975; 95% CI, 0.962-0.989; p < 0.001) while liver cirrhosis (OR, 1.021; 95% CI, 1.007-1.036; p = 0.004) as well as liver cirrhosis and liver fibrosis (OR, 1.015; 95% CI, 1.002-1.028; p = 0.020) were associated with an increased genetic susceptibility to T2D. MR-Egger intercept showed no horizontal pleiotropy (p > 0.05). Cochran's Q showed no heterogeneity (p > 0.05). Leave-one-out sensitivity analysis showed that the results were robust. Conclusion: CHB has the potential to act as a protective factor for T2D, but its effectiveness is constrained by viral load and disease stage. This protective effect diminishes or disappears as viral load decreases, and it transforms into a risk factor with the progression to liver fibrosis and cirrhosis.

7.
Photodiagnosis Photodyn Ther ; : 104103, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677500

ABSTRACT

BACKGROUND: This study used optical coherence tomography (OCT) to observe real-time internal gap formation in both bulk-fill and conventional resin composites. It aimed to provide a quantitative analysis of variations, addressing the inconclusive nature of microleakage assessment caused by differences in testing methods. METHODS: Fifty extracted third molars prepared with Class I cavities, were divided into five groups (n=10). Conventional resin Filtek Z350 XT (FZX) was applied with a double-layer filling of 2 mm per layer. Bulk-fill resins X-tra fil (XTF), Filtek Bulk Fill Posterior Restorative (FBP), Surefil SDR Flow + (SDR), and Filtek Flowable Restorative (FFR) were applied with a single-layer filling of 4 mm. Real-time OCT imaging was conducted during light curing. Post-curing, the entire sample was OCT-scanned. Following this, ImageJ software was used to measure the gap (G1%). Subsequently, thermal cycling (TC) (5000 times, 5°C-55°C) was applied, followed by OCT scanning to calculate the gap (G2%) and ΔG%. Data were analyzed using two-way repeated measures ANOVA, Kruskal-Wallis test, and Duncan's test (α=0.05). RESULTS: There was no significant difference in G1% among the groups (p>0.05). Following TC, FZX exhibited the highest G2%, succeeded by FFR, FBP, XTF, and SDR, with SDR demonstrating the lowest G2% (p<0.05). FZX showed the highest ΔG% (p<0.05), while SDR exhibited the lowest ΔG% (p<0.05). CONCLUSION: OCT proves to be a promising tool for detecting microleakage. TC exerted a more significant negative impact on conventional resin. Surefil SDR Flow + displayed the least microleakage, both before and after TC.

8.
Adv Sci (Weinh) ; : e2400492, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569466

ABSTRACT

The cooperative diagnosis of non-coding RNAs (ncRNAs) can accurately reflect the state of cell differentiation and classification, laying the foundation of precision medicine. However, there are still challenges in simultaneous analyses of multiple ncRNAs and the integration of biomarker data for cell typing. In this study, DNA framework-based programmable atom-like nanoparticles (PANs) are designed to develop molecular classifiers for intra-cellular imaging of multiple ncRNAs associated with cell differentiation. The PANs-based molecular classifier facilitates signal amplification through the catalytic hairpin assembly. The interaction between PAN reporters and ncRNAs enables high-fidelity conversion of ncRNAs expression level into binding events, and the assessment of in situ ncRNAs levels via measurement of the fluorescent signal changes of PAN reporters. Compared to non-amplified methods, the detection limits of PANs are reduced by four orders of magnitude. Using human gastric cancer cell lines as a model system, the PANs-based molecular classifier demonstrates its capacity to measure multiple ncRNAs in living cells and assesses the degree of cell differentiation. This approach can serve as a universal strategy for the classification of cancer cells during malignant transformation and tumor progression.

9.
Sci China Life Sci ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38573362

ABSTRACT

The human face is a valuable biomarker of aging, but the collection and use of its image raise significant privacy concerns. Here we present an approach for facial data masking that preserves age-related features using coordinate-wise monotonic transformations. We first develop a deep learning model that estimates age directly from non-registered face point clouds with high accuracy and generalizability. We show that the model learns a highly indistinguishable mapping using faces treated with coordinate-wise monotonic transformations, indicating that the relative positioning of facial information is a low-level biomarker of facial aging. Through visual perception tests and computational 3D face verification experiments, we demonstrate that transformed faces are significantly more difficult to perceive for human but not for machines, except when only the face shape information is accessible. Our study leads to a facial data protection guideline that has the potential to broaden public access to face datasets with minimized privacy risks.

10.
Heliyon ; 10(8): e29558, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681620

ABSTRACT

As a well-known classical Chinese medicine prescription, Shengxian Decoction (SXD) has been applied for a century to treat cardiovascular diseases, especially coronary heart disease (CHD), but the potentially effective compounds and underlying mechanisms remain unclear. With ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) and network pharmacology analysis, the potential effective compounds of SXD and their pharmacological mechanisms against CHD were identified and revealed. 57 effective compounds with favorable pharmacokinetic characteristics and biological activities were screened through UPLC-Q-TOF/MS analysis, database and literature mining, interacting with 96 CHD-related targets to support potential synergistic therapeutic actions. Systematic analysis of the PPI network and microarray data further revealed six core targets, including TNF, IL-1ß, IL-6, TP53, VEGFA and PTGS2, which were mainly involved in fluid shear stress and atherosclerosis, lipid and atherosclerosis, PI3K-Akt signaling pathway et al. Moreover, the proposed contribution indexes of effective compounds indicated these compounds, including isoferulic acid, quercetin, calycosin, ferulic acid, kaempferol, calycosin 7-O-glycoside, formononetin, astragaloside IV and saikosaponin D, as the core compounds of SXD. The molecular docking results confirmed that those core compound-target pairs exhibited strong binding energy. Furthermore, we validated that SXD significantly alleviated myocardial tissue injury in CHD rats and reversed H/R-induced decreases in H9c2 cell viability by attenuating the production of TNF, IL-6 and IL-1ß, and reducing cardiomyocyte apoptosis via down-regulating the TP53, caspase3 and cytochrome C mRNA expression levels as well as caspase3, caspase9 and cytochrome C protein expression levels according to RT-qPCR and Western blot results. Our findings explained the pharmacological mechanisms underlying the effectiveness of SXD in the treatment of CHD, and laid a foundation for future basic and clinical research of SXD.

12.
Front Plant Sci ; 15: 1340867, 2024.
Article in English | MEDLINE | ID: mdl-38590751

ABSTRACT

Vacuolar Pi transporters (VPTs) have recently been identified as important regulators of cellular Pi status in Arabidopsis thaliana and Oryza sativa. In the oil crop Brassica napus, BnA09PHT5;1a and BnC09PHT5;1a are two homologs of AtPHT5;1, the vacuolar Pi influx transporter in Arabidopsis. Here, we show that Pi deficiency induces the transcription of both homologs of PHT5;1a genes in B. napus leaves. Brassica PHT5;1a double mutants (DM) had smaller shoots and higher cellular Pi concentrations than wild-type (WT, Westar 10), suggesting the potential role of BnPHT5;1a in modulating cellular Pi status in B. napus. A proteomic analysis was performed to estimate the role of BnPHT5;1a in Pi fluctuation. Results show that Pi deprivation disturbs the abundance of proteins in the physiological processes involved in carbohydrate metabolism, response to stimulus and stress in B. napus, while disruption of BnPHT5;1a genes may exacerbate these processes. Besides, the processes of cell redox homeostasis, lipid metabolic and proton transmembrane transport are supposed to be unbalanced in BnPHT5;1a DM under the -Pi condition. Noteworthy, disruption of BnPHT5;1a genes severely alters the abundance of proteins related to ATP biosynthesis, and proton/inorganic cation transmembrane under normal Pi condition, which might contribute to B. napus growth limitations. Additionally, seven new protein markers of Pi homeostasis are identified in B. napus. Taken together, this study characterizes the important regulatory role of BnPHT5;1a genes as vacuolar Pi influx transporters in Pi homeostasis in B. napus.

13.
Front Endocrinol (Lausanne) ; 15: 1354511, 2024.
Article in English | MEDLINE | ID: mdl-38590822

ABSTRACT

Background: Diabetic peripheral neuropathy (DPN) contributes to disability and imposes heavy burdens, while subclinical DPN is lack of attention so far. We aimed to investigate the relationship between vitamin D and distinct subtypes of subclinical DPN in type 2 diabetes (T2DM) patients. Methods: This cross-sectional study included 3629 T2DM inpatients who undertook nerve conduction study to detect subclinical DPN in Zhongshan Hospital between March 2012 and December 2019. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D (25(OH)D) level < 50 nmol/L. Results: 1620 (44.6%) patients had subclinical DPN and they were further divided into subgroups: distal symmetric polyneuropathy (DSPN) (n=685), mononeuropathy (n=679) and radiculopathy (n=256). Compared with non-DPN, DPN group had significantly lower level of 25(OH)D (P < 0.05). In DPN subtypes, only DSPN patients had significantly lower levels of 25(OH)D (36.18 ± 19.47 vs. 41.03 ± 18.47 nmol/L, P < 0.001) and higher proportion of vitamin D deficiency (78.54% vs. 72.18%, P < 0.001) than non-DPN. Vitamin D deficiency was associated with the increased prevalence of subclinical DPN [odds ratio (OR) 1.276, 95% confidence interval (CI) 1.086-1.501, P = 0.003] and DSPN [OR 1. 646, 95% CI 1.31-2.078, P < 0.001], independent of sex, age, weight, blood pressure, glycosylated hemoglobin, T2DM duration, calcium, phosphorus, parathyroid hormone, lipids and renal function. The association between vitamin D deficiency and mononeuropathy or radiculopathy was not statistically significant. A negative linear association was observed between 25(OH)D and subclinical DSPN. Vitamin D deficiency maintained its significant association with subclinical DSPN in all age groups. Conclusions: Vitamin D deficiency was independently associated with subclinical DSPN, rather than other DPN subtypes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Mononeuropathies , Vitamin D Deficiency , Humans , Risk Factors , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/etiology , Cross-Sectional Studies , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Mononeuropathies/complications
14.
Oncol Lett ; 27(5): 238, 2024 May.
Article in English | MEDLINE | ID: mdl-38601183

ABSTRACT

Glucose metabolism, as a novel theory to explain tumor cell behavior, has been intensively studied in various tumors. The present study explored the long non-coding RNAs (lncRNAs) related to glycolysis in grade II-III glioma, aiming to provide a promising target for further research. Pearson correlation analysis was used to identify glycolysis-related lncRNAs. Univariate/multivariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator algorithm were applied to identify glycolysis-related lncRNAs to construct a prognosis prediction model. Subsequently, multi-dimensional evaluations were used to verify whether the risk model could predict the prognosis and survival rate of patients with grade II-III glioma. Finally, it was verified by functional experiments. The present study finally identified seven glycolysis-related lncRNAs (CRNDE, AC022034.1, RHOQ-AS1, AL159169.2, AL133215.2, AC007098.1 and LINC02587) to construct a prognosis prediction model. The present study further investigated the underlying immune microenvironment, somatic landscape and functional enrichment pathways. Additionally, individualized immunotherapeutic strategies and candidate compounds were identified to guide clinical treatment. The experimental results demonstrated that CRNDE could increase the proliferation of SHG-44 cells. In conclusion, a large sample of human grade II-III glioma in The Cancer Genome Atlas database was used to construct a risk model using glycolysis-related lncRNAs to predict the prognosis of patients with grade II-III glioma.

15.
Int J Surg ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38608032

ABSTRACT

BACKGROUND: Whether health inequalities of disease burden and medical utilization exist by ethnicity in Asian breast cancer (BC) patients remains unclear. We aim to measure ethnic disparities in disease burden and utilization among Mongolian and Han female breast cancer patients in China. MATERIALS AND METHODS: Based on data extracted from Inner Mongolia Regional Health Information Platform, a retrospective cohort study was established during 2012-2021. Disease burden including incidence, 5-year prevalence, mortality, survival rate, and medical cost were analyzed and compared between Han and Mongolian patients. RESULTS: A total of 34,878 female patients (mean [SD] age, 52.34 [10.93] years) were included among 18.19 million Chinese, and 4,315 [12.03%] participants were Mongolian. Age-standardized rates of incidence are 32.68 (95% CI: 20.39-44.98) per 100,000. Higher age-specific incidence and 5-year prevalence were observed in Mongolian than in Han. The cost of breast cancer annually per capita was significantly lower for Mongolian than Han in FBC ($1,948.43 [590.11-4 776.42] vs. $2,227.35 [686.65-5,929.59], P<0.001). Mongolian females showed higher all-cause mortality (30.92, [95% CI: 28.15-33.89] vs. 27.78, [95% CI: 26.77-28.83] per 1,000, P=0.036) and breast cancer-specific mortality (18.78, [95% CI: 16.64-21.13] vs. 15.22, [95% CI: 14.47-16.00] per 1,000, P=0.002) than Han females. After adjusting covariates, Mongolian were associated with increased all-cause mortality (HR, 1.21, [95% CI, 1.09-1.34]; P<0.001) and breast cancer-specific mortality (HR, 1.31, [95% CI, 1.14-1.49]; P<0.001). CONCLUSION: The findings of this cohort study highlight a higher level of disease burden with unmet medical demand in Mongolian patients, suggesting that more practical efforts should be made for the minority. Further research is needed to explore the concrete mechanisms of the disparities as well as eliminate health disproportion.

16.
Plants (Basel) ; 13(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38592851

ABSTRACT

Receptor kinases DRUS1 (Dwarf and Runtish Spikelet1) and DRUS2 are orthologues of the renowned Arabidopsis thaliana gene FERONIA, which play redundant roles in rice growth and development. Whether the two duplicated genes perform distinct functions in response to environmental stress is largely unknown. Here, we found that osmotic stress (OS) and ABA increased DRUS1 expression while decreasing DRUS2. When subjected to osmotic stress, the increased DRUS1 in drus2 mutants suppresses the OsIAA repressors, resulting in a robust root system with an increased number of adventitious and lateral roots as well as elongated primary, adventitious, and lateral roots, conferring OS tolerance. In contrast, the decreased DRUS2 in drus1-1 mutants are not sufficient to suppress OsIAA repressors, leading to a feeble root system with fewer adventitious and lateral roots and hindering seminal root growth, rendering OS intolerance. All these findings offer valuable insights into the biological significance of the duplication of two homologous genes in rice, wherein, if one is impaired, the other one is able to continue auxin-signaling-mediated root growth and development to favor resilience to environmental stress, such as water shortage.

17.
J Econ Entomol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592125

ABSTRACT

Given the rapid spread and potential harm caused by the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae) in China, it has become imperative to comprehend the developmental biology of this invasive species. Currently, there is limited knowledge regarding the impact of A. tumida female oviposition site preference on larval growth and development. To examine this, we investigated the ovipositional preference of adult female A. tumida on bee pupae, beebread, banana, and honey through a free choice test. Furthermore, we assessed the impact of these food resources on offspring performance, which included larval development time, survival, wandering larvae weight, emerged adult body mass, reproduction, and juvenile hormone titer. Our results showed that A. tumida females exhibited a strong preference for ovipositing on bee pupae compared to other diets, while showing reluctance toward honey. Moreover, A. tumida larvae that were fed on bee pupae displayed accelerated growth compared to those fed on other diets. Furthermore, A. tumida fed on bee pupae exhibited higher weights for wandering larvae, and emerged adult, increased pupation rates, enhanced fecundity and fertility, as well as a larger number of unilateral ovarioles during the larval stage when compared to those fed on other diets. Overall, the results indicate that the oviposition preferences of A. tumida females are adaptive, as their choices can enhance the fitness of their offspring. This finding aligns broadly with the hypothesis of oviposition preference and larval performance. This study can provide a foundation for the development of attractants aimed at promoting the oviposition of the A. tumida adults.

18.
Microbiol Spectr ; 12(5): e0409823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602399

ABSTRACT

Targeted next-generation sequencing (tNGS) can be used to perform Mycobacterium tuberculosis (MTB) complex-specific amplification or target capture directly from sputum samples, yielding simultaneous coverage of many genes and DNA regions associated with antimicrobial resistance (AMR). Performance comparisons of tNGS and another molecular testing tool, Xpert MTB/rifampicin (RIF), have been empirical. Here, using a dilution series of a RIF-resistant clinical isolate of MTB, we found that tNGS had a slightly lower limit of bacterial detection (102 CFU/mL) compared with Xpert MTB/RIF (103 CFU/mL) in culture medium. However, the minimum detection limit of the rpoB S450L mutation in this isolate was significantly lower with tNGS (102 CFU/mL) than with Xpert MTB/RIF (106 CFU/mL). Sputum samples collected from 129 suspected pulmonary tuberculosis patients were also prospectively studied with the clinical diagnosis as a reference, revealing that the sensitivity of tNGS (48.6%) was higher than those of culture (46.8%), Xpert MTB/RIF (39.4%), and smear microscopy (34.9%) testing. Notably, AMR analysis of 56 MTB-positive samples as determined by tNGS revealed high mutation frequencies of 96.4%, 35.7%, 26.8%, and 19.6% in the following AMR-associated genes: rrs, rpoB, katG, and pncA, respectively. The findings of this study provide theoretical support for the differential clinical application of tNGS and Xpert MTB/RIF and suggest that tNGS has greater application value in tuberculosis drug resistance monitoring and prevention.IMPORTANCETargeted next-generation sequencing (tNGS) can be used to perform Mycobacterium tuberculosis (MTB) complex-specific amplification or target capture directly from sputum samples, yielding simultaneous coverage of genes and DNA regions associated with antimicrobial resistance (AMR). Performance comparisons of tNGS and Xpert MTB/rifampicin (RIF) have been empirical. The Xpert MTB/RIF assay is a commercial system that uses the nucleic acid amplification detection method for rapid (2 hours) diagnosis of tuberculosis (TB). The cost of the tNGS and Xpert MTB/RIF assays in this study was similar, at USD 98 and USD 70-104 per sample, respectively, but the time required for tNGS (3 days) was much longer than that required for the Xpert MTB/RIF assay. However, tNGS yielded more accurate results and a larger number of AMR-associated gene mutations, which compensated for the extra time and highlighted the greater application value of tNGS in TB drug resistance monitoring and prevention.


Subject(s)
High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis , Rifampin , Sputum , Tuberculosis, Pulmonary , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Humans , Sputum/microbiology , High-Throughput Nucleotide Sequencing/methods , Rifampin/pharmacology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/microbiology , Bacterial Proteins/genetics , Mutation , Drug Resistance, Bacterial/genetics , Molecular Diagnostic Techniques/methods , Microbial Sensitivity Tests , Female , DNA-Directed RNA Polymerases/genetics , Male , Adult , DNA, Bacterial/genetics
19.
J Nanobiotechnology ; 22(1): 125, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520022

ABSTRACT

After intracerebral hemorrhage (ICH) occurs, the overproduction of reactive oxygen species (ROS) and iron ion overload are the leading causes of secondary damage. Removing excess iron ions and ROS in the meningeal system can effectively alleviate the secondary damage after ICH. This study synthesized ginsenoside Rb1 carbon quantum dots (RBCQDs) using ginsenoside Rb1 and ethylenediamine via a hydrothermal method. RBCQDs exhibit potent capabilities in scavenging ABTS + free radicals and iron ions in solution. After intrathecal injection, the distribution of RBCQDs is predominantly localized in the subarachnoid space. RBCQDs can eliminate ROS and chelate iron ions within the meningeal system. Treatment with RBCQDs significantly improves blood flow in the meningeal system, effectively protecting dying neurons, improving neurological function, and providing a new therapeutic approach for the clinical treatment of ICH.


Subject(s)
Ginsenosides , Quantum Dots , Mice , Animals , Reactive Oxygen Species , Cerebral Hemorrhage/drug therapy , Iron , Ions
20.
Int J Surg ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489552

ABSTRACT

BACKGROUND: Split liver transplantation increases graft availability, but its safe and effective utilization is insufficiently documented. This study aimed to investigate the association between perioperative body composition abnormalities and outcomes in adult split liver transplantation. MATERIALS AND METHODS: 240 recipients who underwent split liver transplantation in three centers were enrolled in this retrospective cohort study. Body composition abnormalities including sarcopenia, myosteatosis, visceral obesity, and sarcopenic obesity were evaluated at baseline and one month after surgery using computed tomography. Their impact on outcomes including early allograft dysfunction, early complications, intensive care unit stay, graft regeneration rate and survival was analyzed. RESULTS: Recipients with sarcopenia or myosteatosis had a higher risk of early allograft dysfunction, higher early complication rate, and longer length of intensive care unit stay (all P<0.05), while there was no difference in graft regeneration rate. Recipient and graft survival were significantly worse for recipients with body composition abnormalities (all P<0.05). In multivariable Cox-regression analysis, sarcopenia (hazard ratio=1.765, P=0.015), myosteatosis (hazard ratio=2.066, P=0.002), and visceral obesity (hazard ratio=1.863, P=0.008) were independently associated with shorter overall survival. Piling up of the three factors increased the mortality risk stepwise (P<0.001). Recipients experienced skeletal muscle loss and muscle fat infiltration one month after surgery. Postoperative worsening sarcopenia (hazard ratio=2.359, P=0.009) and myosteatosis (hazard ratio=1.878, P=0.026) were also identified as independent risk factors for mortality. CONCLUSION: Sarcopenia, myosteatosis and their progression negatively affect outcomes including early allograft dysfunction, early complications, intensive care unit stay and survival after SLT. Systemic evaluation and dynamic monitoring of body composition are valuable.

SELECTION OF CITATIONS
SEARCH DETAIL
...