Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(7): e1012352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39024388

ABSTRACT

CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.


Subject(s)
Cell Differentiation , Malaria , Plasmodium yoelii , Receptors for Activated C Kinase , STAT3 Transcription Factor , T Follicular Helper Cells , Animals , Receptors for Activated C Kinase/metabolism , STAT3 Transcription Factor/metabolism , Malaria/immunology , Malaria/parasitology , Mice , Plasmodium yoelii/immunology , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Mice, Knockout , Germinal Center/immunology
2.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38688063

ABSTRACT

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Subject(s)
Arthritis, Rheumatoid , Isoquinolines , Signal Transduction , Animals , Humans , Male , Rats , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/chemical synthesis , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Dose-Response Relationship, Drug , Drug Discovery , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Molecular Structure , Signal Transduction/drug effects , Structure-Activity Relationship , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology
3.
FEBS Open Bio ; 13(9): 1723-1736, 2023 09.
Article in English | MEDLINE | ID: mdl-37400956

ABSTRACT

Stress-related illnesses are linked to the onset and progression of renal diseases and depressive disorders. To investigate stress-induced changes in the renal transcriptome associated with the development of depressive behaviors, we generated here a chronic social defeat stress (CSDS) model of C57 BL/6 male mice and then performed RNA sequencing of the kidneys to obtain an inflammation-related transcriptome. Administration of the antidepressant drug fluoxetine (10 mg·kg-1 ·day-1 ) during CSDS induction could partially alleviate renal inflammation and reverse CSDS-induced depression-like behaviors. Moreover, fluoxetine also modulated gene expression of stress-related hormone receptors, including prolactin and melanin-concentrating hormone. These results suggest that CSDS can induce gene expression changes associated with inflammation in the kidney of C57 BL/6 male mice, and this inflammation can be treated effectively by fluoxetine.


Subject(s)
Antidepressive Agents , Fluoxetine , Animals , Mice , Male , Fluoxetine/pharmacology , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Inflammation/drug therapy , Kidney
4.
Anal Chim Acta ; 1252: 341075, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-36935142

ABSTRACT

A simple tactic for electrochemical determination of a typical biomarker for breast cancer, human epidermal growth factor receptor 2 (HER2), was presented via the construction of a low fouling sensing interface functionalized with polyethylene glycol (PEG) and peptide. The HER2 biosensor was developed based on an electrode modified by the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and Au nanoparticles (AuNPs) as the sensing substrate, and followed by the immobilization of an antifouling PEG and a peptide with both recognizing and antifouling properties. Thanks to the combined antifouling effect of the PEG and peptide, and the specific recognizing ability of the peptide to the target HER2, the developed electrochemical biosensor exhibited strong antifouling performances in complex biofluids, such as human blood and serum, and it was capable of assaying target HER2 within a very wide linear range (1.0 pg mL-1 to 1.0 µg mL-1), with an ultralow limit of detection (0.44 pg mL-1). The combination of two kinds of antifouling biomaterials (PEG and peptide) offered an effective strategy for the development of low fouling sensing platforms suitable for practical assay in complex biotic environments.


Subject(s)
Biofouling , Biosensing Techniques , Metal Nanoparticles , Humans , Polyethylene Glycols/chemistry , Gold/chemistry , Biofouling/prevention & control , Metal Nanoparticles/chemistry , Peptides/chemistry , Electrochemical Techniques
5.
Anal Chim Acta ; 1238: 340646, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36464436

ABSTRACT

An effective strategy to construct low fouling electrochemical biosensors for assaying serum biomarkers was proposed based on specially designed α-aminoisobutyric acid (Aib) incorporated peptides. The Aib-peptides were designed to be of antifouling properties, and at the same to incorporate Aib residues in their interior to enhance the hydrolytic stability. In order to construct the electrochemical biosensor, two kinds of Aib-peptides labelled with biotin were modified on the electrode surface: One with cysteine terminal for easy attachment to the electrode modified with gold nanoparticles, the other with unique terminal peptide sequence for specific binding of immunoglobulin G (IgG), and they were connected through the streptavidin-biotin affinity system. Owing to the interposition of Aib residues, the peptides as well as the constructed biosensors showed excellent antifouling performances and enhanced stability against enzymatic degradation in serum. Furthermore, the IgG biosensor constructed with the Aib-peptides displayed a very low detection limit (29.5 pg mL-1) and a broad linear range (100 pg mL-1 - 10 µg mL-1), and it was able to assay IgG in clinical human sera with decent accuracy and reliability. This strategy provides a new path for the construction of stable antifouling biosensors based on functional peptides for practical biomarker assaying in real clinical samples.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , Biotin , Gold , Reproducibility of Results , Peptides , Immunoglobulin G
6.
Cell Rep ; 41(6): 111592, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351383

ABSTRACT

Steady-state extramedullary hematopoiesis during adulthood is an emerging field of great interest. The meninges contain both innate and adaptive immune cells, which provide immunosurveillance of the central nervous system (CNS). Hematopoietic progenitors that give rise to meningeal immune cells remain elusive. Here, we report that steady-state meninges of adult mice host hematopoietic stem cells (HSCs), as defined by long-term, efficient, multi-lineage reconstitution and self-renewal capacity in the meninges, blood, spleen, and bone marrow of sublethally irradiated adult recipients. HSCs lodge in the meninges after birth with local expression of pro-hematopoietic niche factors. Meningeal HSCs are locally maintained in homeostasis and get replenished from the blood only when the resident pool is reduced. With a tissue-specific expression profile, meningeal HSCs can provide the CNS with a constant supply of leukocytes more adapted to local microenvironment.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Mice , Animals , Hematopoietic Stem Cells/metabolism , Hematopoiesis/physiology , Bone Marrow , Spleen , Meninges , Mice, Inbred C57BL
7.
Front Pharmacol ; 13: 896601, 2022.
Article in English | MEDLINE | ID: mdl-36046815

ABSTRACT

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder. But the treatment of depression remains challenging. Anti-inflammatory treatments frequently produce antidepressant effects. EPO-derived helix-B peptide ARA290 has been reported to retain the anti-inflammatory and tissue-protective functions of EPO without erythropoiesis-stimulating effects. The effects of ARA290 on MDD remain elusive. This study established chronic unpredictable mild stress and chronic social defeat stress mouse models. Daily administration of ARA290 during chronic stress induction in two mouse models ameliorated depression-like behavior, similar to fluoxetine. With marginal effects on peripheral blood hemoglobin and red cells, ARA290 and fluoxetine reversed chronic stress-induced increased frequencies and/or numbers of CD11b+Ly6Ghi neutrophils and CD11b+Ly6Chi monocytes in the bone marrow and meninges. Furthermore, both drugs reversed chronic stress-induced microglia activation. Thus, ARA290 ameliorated chronic stress-induced depression-like behavior in mice through, at least partially, its anti-inflammatory effects.

8.
Arch Med Res ; 53(5): 469-482, 2022 07.
Article in English | MEDLINE | ID: mdl-35817647

ABSTRACT

BACKGROUND AND AIM: Previous studies have shown that the hepatitis C virus (HCV) core protein plays an important role in the metastasis of hepatocellular carcinoma (HCC) cells. This study aimed to identify the potential mechanism of HCV core protein in HCC. METHODS: A transcription factor microarray analysis was performed to identify the factors regulated by the HCV core protein. A comprehensive bioinformatics analysis approach was utilized to predict the functions, regulatory signaling pathways and downstream target genes of the differentially regulated transcription factors. Dual-luciferase assays, qPCR, Western blotting, ERK pathway inhibition experiments and siRNA knockdown experiments were performed to verify the effects of the HCV core protein on PEA3, SRF and c-Fos, as well asthe underlying mechanism. The migration/invasion assay and scratch assay served to confirm the metastasis-promoting mechanism of the HCV core protein. RESULTS: The results demonstrated that altered expression of PEA3, SRF and c-Fos mediated by the HCV core protein were associated with the MAPK/ERK pathway. c-Fos was a downstream target protein of PEA3 and SRF. Knockdown of PEA3-SRF/c-Fos expression and ERK pathway components suppressed the migration and invasion activity of hepatocytes by affecting MMP2 and MMP9 expression. CONCLUSION: We provided preliminary evidence that the role of the HCV core protein in promoting metastasis is at least partially dependent on the activation of the MAPK/ERK/PEA3-SRF/c-Fos/MMP2/MMP9 axis. These findings reveal a novel mechanism by which the HCV core protein promotes HCC metastasis and may provide new therapeutic targets for patients with metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hepatocytes/metabolism , Humans , Liver Neoplasms/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9 , Transcription Factors , Viral Core Proteins/metabolism , Viral Core Proteins/pharmacology
9.
Biosens Bioelectron ; 206: 114162, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35272212

ABSTRACT

Herein, a universal strategy for the construction of highly sensitive and low fouling biosensors was proposed based on antifouling peptides conjugated with recognizing DNA probes. The peptide-DNA conjugate was formed through a reagent-free click reaction between a typical DNA aptamer modified with 5'-dibenzocyclooctyne (DBCO) and the designed antifouling peptide terminated with biotin and the azide group at its two ends. With the assistance of streptavidin (SA), the electrochemical biosensor was constructed via immobilization of the straight peptides and peptide-DNA conjugates in sequence onto the electrode surface modified with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs). The prepared biosensor exhibited excellent antifouling performances in various human bodily fluids such as serum, sweat and urine, with a wide linear response range for CA125 from 0.01 U mL-1 to 1000 U mL-1, and a low limit of detection of 0.003 U mL-1. Combining the advantages of the antifouling peptide and recognizing DNA probe, this sensing strategy was capable of assaying CA125 in undiluted human serum, and it also offered a highly promising way for the development of different antifouling biosensors through the conjugation of antifouling peptides with various DNA probes.


Subject(s)
Biofouling , Biosensing Techniques , Metal Nanoparticles , Neoplasms , Biofouling/prevention & control , Biomarkers, Tumor , CA-125 Antigen , DNA , DNA Probes , Electrochemical Techniques , Gold , Humans , Peptides
10.
Theranostics ; 12(5): 2248-2265, 2022.
Article in English | MEDLINE | ID: mdl-35265209

ABSTRACT

Fulminant hepatitis (FH) is a life-threatening disease with partially understood pathogenesis. It has been demonstrated that myeloid-derived suppressor cells (MDSCs) are recruited into the liver during this process, and their augmented accumulation by various strategies protects against liver injury. However, the underlying mechanism(s) remain elusive. Receptor for activated C kinase 1 (RACK1), a multi-functional scaffold protein, is highly expressed in normal liver and has been implicated in liver physiology and diseases, but the in vivo role of hepatic RACK1 in FH remains unknown. Methods: Survival curves and liver damage were monitored to investigate the in vivo role of hepatic RACK1 in FH. The liver microenvironment was explored by microarray-based transcriptome analysis, flow cytometry, immunoblotting, and immunohistochemistry. MDSCs were identified with phenotypic and functional characteristics. Functional antibodies were used to target MDSCs. Co-culture techniques were used to study the underlying mechanism(s) of protection. The interaction of RACK1 with histone deacetylase 1 (HDAC1) and the consequent effects on HDAC1 ubiquitination were analyzed. Ectopic expression of HDAC1 with recombinant adeno-associated virus serotype 8 was conducted to confirm the role of HDAC1 in the protective effects of hepatic RACK1 deficiency against FH. Post-translational modifications of RACK1 were also investigated during the induction of FH. Results: Liver-specific RACK1 deficiency rendered mice resistant to FH. RACK1-deficient livers exhibited high basal levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and S100 calcium-binding protein A9 (S100A9), associated with MDSC accumulation under steady-state conditions. Targeting MDSCs with an antibody against either Gr1 or DR5 abrogated the protective effects of liver-specific RACK1 deficiency. Accumulated MDSCs inhibited inflammatory cytokine production from macrophages and enhanced IκB kinase (IKK)/NF-κB pathway activation in hepatocytes. Further investigation revealed that RACK1 maintained HDAC1 protein level in hepatocytes by direct binding, thereby controlling histone H3K9 and H3K27 acetylation at the Cxcl1 and S100a9 promoters. Ectopic expression of HDAC1 in livers with RACK1 deficiency partially reversed the augmented Cxcl1/S100a9 → MDSCs → IKK/NF-κB axis. During FH induction, RACK1 was phosphorylated at serine 110, enhancing its binding to ubiquitin-conjugating enzyme E2T and promoting its ubiquitination and degradation. Conclusion: Liver-specific RACK1 deficiency protects against FH through accelerated HDAC1 degradation and the consequent CXCL1/S100A9 upregulation and MDSC accumulation.


Subject(s)
Massive Hepatic Necrosis , Myeloid-Derived Suppressor Cells , Animals , Calgranulin B/metabolism , Hepatocytes/metabolism , Massive Hepatic Necrosis/metabolism , Mice , Myeloid-Derived Suppressor Cells/metabolism , NF-kappa B/metabolism , Receptors for Activated C Kinase/metabolism
11.
Anal Chem ; 93(42): 14351-14357, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34648255

ABSTRACT

Biofouling has been a substantial burden on biomarker analysis in complex biological media, leading to poor sensitivity and selectivity or even malfunction of the sensing devices. In this work, an electrochemical biosensor with excellent antifouling ability and high stability was fabricated based on amyloid-like bovine serum albumin (AL-BSA) crosslinked with the conducting polymer polyaniline (PANI). Compared with the crosslinked conventional bovine serum albumin (BSA), the crosslinked AL-BSA exhibited enhanced antifouling capability, and it was able to form an effective antifouling film within a significantly short reaction time. With further immobilization of immunoglobulin M (IgM) antibodies onto the prepared AL-BSA surface via the formation of amide bonds, an electrochemical biosensor capable of assaying IgM in human serum samples with superior selectivity and sensitivity was constructed. The biosensor exhibited excellent antifouling performance even in 100% human serum, a low limit of detection down to 2.32 pg mL-1, and acceptable accuracy for real sample analysis compared with the standard enzyme-linked immunosorbent assay for IgM detection. This strategy of using AL-BSA to construct antifouling sensing interfaces provided a reliable diagnostic method for the detection of a series of protein biomarkers in complex biological media.


Subject(s)
Biofouling , Biosensing Techniques , Biofouling/prevention & control , Electrochemical Techniques , Humans , Peptides , Polymers , Serum Albumin, Bovine
12.
PLoS Pathog ; 17(9): e1009901, 2021 09.
Article in English | MEDLINE | ID: mdl-34506605

ABSTRACT

Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity.


Subject(s)
Immunity, Innate/immunology , Interferon Regulatory Factor-7/immunology , Myeloid Cells/immunology , RNA Virus Infections/immunology , RNA Viruses/immunology , Animals , Interferon Regulatory Factor-7/biosynthesis , Mice , Myeloid Cells/metabolism , NEDD8 Protein/deficiency , Protein Processing, Post-Translational , Ubiquitins/deficiency
13.
J Immunol ; 207(5): 1411-1418, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34348973

ABSTRACT

The receptor for activated C kinase 1 (RACK1) adaptor protein has been implicated in viral infection. However, whether RACK1 promotes in vivo viral infection in mammals remains unknown. Moreover, it remains elusive how RACK1 is engaged in antiviral innate immune signaling. In this study, we report that myeloid RACK1 deficiency does not affect the development and survival of myeloid cells under resting conditions but renders mice less susceptible to viral infection. RACK1-deficient macrophages produce more IFN-α and IFN-ß in response to both RNA and DNA virus infection. In line with this, RACK1 suppresses transcriptional activation of type 1 IFN gene promoters in response to virus infection. Analysis of virus-mediated signaling indicates that RACK1 inhibits the phosphorylation of IRF3/7. Indeed, RACK1 interacts with IRF3/7, which is enhanced after virus infection. Further exploration indicates that virus infection triggers AMPK activation, which in turn phosphorylates RACK1 at Thr50 RACK1 phosphorylation at Thr50 enhances its interaction with IRF3/7 and thereby limits IRF3/7 phosphorylation. Thus, our results confirm that myeloid RACK1 promotes in vivo viral infection and provide insight into the control of type 1 IFN production in response to virus infection.


Subject(s)
AMP-Activated Protein Kinases , Interferon Regulatory Factor-3 , Adaptor Proteins, Signal Transducing , Animals , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Mice , Phosphorylation , Receptors for Activated C Kinase , Signal Transduction
14.
Biomaterials ; 275: 120958, 2021 08.
Article in English | MEDLINE | ID: mdl-34130142

ABSTRACT

Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) play an important role in the development of tumors by secreting a variety of cytokines or directly communicating with tumor cells, making TAMs-targeted therapeutic strategies very attractive. It has been reported that oncogene c-Myc is related to every aspect of the oncogenic process of tumor cells and the alternative activation of macrophages. Hence, we constructed a glycolipid nanocarrier containing ROS-responsive peroxalate linkages (CSOPOSA) for ROS-triggered release of drugs and further modified it with Ex 26 (Ex 26-CSOPOSA), a selective sphingosine 1-phosphate receptor 1 (S1PR1) antagonist, to achieve the dual-targeted delivery of the c-Myc inhibitor JQ1 via S1PR1, which is overexpressed on both tumor cells and TAMs, thereby inducing apoptosis of tumor cells, and blocking M2 polarization of macrophages. More strikingly, our studies found that JQ1 could effectively inhibit the migration of tumor cells induced by M2 macrophages-derived exosomes via blocking Caveolin-1 related intercellular exosome exchange through lncRNA H19 and miR-107. The in vivo results revealed that this dual-targeted delivery strategy effectively inhibited tumor growth and metastasis with less systemic toxicity, providing a potential method for effective tumor treatment.


Subject(s)
Caveolin 1 , Exosomes , Neoplasms, Experimental/drug therapy , Reactive Oxygen Species , Animals , Cell Line, Tumor , Drug Carriers , Drug Liberation , Female , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc , RAW 264.7 Cells , Tumor Microenvironment
15.
Mol Ther Nucleic Acids ; 24: 127-139, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33738144

ABSTRACT

Hepatitis B (HB) is a viral infectious disease that seriously endangers human health, and since there are no radical drugs to counter this, effective and safe therapies urgently need to be developed. HB virus (HBV) mainly infects hepatocytes (HCs), while the drugs are easily phagocytosed by Kupffer cells (KCs). In this study, the glutathione concentration difference between HCs and KCs was examined and utilized in an ideal drug-release strategy. Here, galactosylated chitosan-oligosaccharide-SS-octadecylamine (Gal-CSSO) was prepared to accurately deliver 10-23 DNAzyme DrzBC (blocking HBeAg expression) or DrzBS (blocking HBsAg expression) in targeted HB therapy. In vitro Gal-CSSO systems exhibited low cytotoxicity, endosomal escape, and glutathione responsiveness. The HBeAg and HBsAg secretion of HepG2.2.15 was significantly decreased by Gal-CSSO systems, and the maximum inhibition rates were 1.82-fold and 2.38-fold greater than those of commercial Lipofectamine 2000 (Lipo2000) systems. In vivo Gal-CSSO systems exhibited HC targeting and HC microenvironmental responsiveness without noticeable hepatotoxicity or systemic toxicity. The HBeAg and HBsAg titers of the HBV-infected mice were evidently decreased by Gal-CSSO systems, and the inhibition rates were 1.52-fold and 1.22-fold greater than those of Lipo2000 systems. This study presents a kind of glycolipid-like polymer micelles that promise efficient and safe gene therapy of HB.

16.
Biomacromolecules ; 21(7): 2818-2828, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32496052

ABSTRACT

Lymph nodes are proposed as the intriguing target in cancer immunotherapy, and cellular immunity is vital for vaccines to fight against cancer. However, inefficient delivery of vaccines to lymph nodes and deficient lysosomal escape of antigens result in weak cellular immunity, which restrains the strength of vaccines in inducing antitumor immune responses. Hence, dendritic cell membrane (DCM)/histidine-modified stearic acid-grafted chitosan (HCtSA)/ovalbumin (OVA) micelles, as pH-responsive biomimetic vaccines, were fabricated to target lymph nodes and induce cellular immunity for enhanced antitumor immune responses. DCM/HCtSA/OVA micelles exhibited pH-dependent antigen release behavior, which resulted in efficient escape of antigens from dendritic cell (DC) lysosomes. Besides, DCM/HCtSA/OVA micelles accumulated and reserved in the lymph nodes, which ensured effective uptake by DCs. Importantly, DCM/HCtSA/OVA micelles induced potent T cell immune responses, promoted secretion of antitumor-related cytokines, and notably inhibited tumor growth. Overall, DCM/HCtSA/OVA micelles exhibit great potential in targeted immunotherapy and can provide guidance for the design of vaccines.


Subject(s)
Cancer Vaccines , Vaccines , Animals , Antigens , Biomimetics , Dendritic Cells , Hydrogen-Ion Concentration , Immunity, Cellular , Lymph Nodes , Mice , Mice, Inbred C57BL , Micelles , Ovalbumin
17.
Carbohydr Polym ; 240: 116270, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32475559

ABSTRACT

Tumor-draining lymph node (TDLN), already bathed in tumor antigens, has been proposed as an intriguing site for cancer immunotherapy. Targeted delivery of adjuvants to TDLN, presumably could induce antitumor immunity for personalized immunotherapy. Although molecular adjuvants can be used for personalized immunotherapy, their efficacy is limited by insufficient antigen uptake by dendritic cells (DCs). In contrast, nanomaterial-based adjuvants can enhance antigen uptake by DCs by capturing antigens. Herein, mannose modified stearic acid-grafted chitosan micelles (MChSA), which presumably could target TDLN, were engineered to capture endogenous antigens and enhance antigen uptake by DCs for personalized immunotherapy. MChSA micelles showed strong antigen-capturing and TDLN targeting ability. Importantly, MChSA micelles induced robust CD4+ and CD8+ T cell responses, stimulated antitumor related cytokine secretion and notably inhibited tumor growth. MChSA micelles, which can target TDLN to induce potent antitumor immune responses as antigen-capturing adjuvants, exhibit great potential in personalized cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Chitosan/chemistry , Dendritic Cells/drug effects , Lymph Nodes , Neoplasms/therapy , Animals , Cell Line, Tumor , Dendritic Cells/cytology , Immunotherapy , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Micelles
18.
Signal Transduct Target Ther ; 5(1): 82, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32467564

ABSTRACT

Although targeted therapy has been extensively investigated for breast cancers, a molecular target with broad application is currently unavailable due to the high heterogeneity of these cancers. Mammaglobin-A (Mam-A), which is overexpressed in most breast carcinomas, has been proposed as a promising target. However, the lack of specific targeting moieties due to uncertain binding epitopes hampers further translational study. Here, seven potential epitopes of Mam-A were disclosed, and a unique epitope was then identified in most types of breast cancers, despite the genotypic heterogeneity. With phage display technology, the epitope was determined to be N-terminal amino acids 42-51 of Mam-A (N42-51). Then, the N42-51 epitope-specific monoclonal antibody, mAb785, was conjugated to poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with therapeutic agents, thereby enhancing the drug uptake and therapeutic efficacy in different genotypes of breast cancers. The computer simulation of the N42-51 epitope and the mAb785 structures, as well as their interactions, further revealed the specific targeting mechanism of the mAb785-conjugated nanoparticles to breast cancers.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/therapy , Mammaglobin A/pharmacology , Antibodies, Monoclonal/immunology , Antineoplastic Agents, Immunological/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Epitopes/genetics , Epitopes/immunology , Female , Humans , Mammaglobin A/genetics , Mammaglobin A/immunology , Nanoparticles/chemistry , Neoplasm Proteins/genetics , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
19.
ACS Biomater Sci Eng ; 6(5): 3217-3229, 2020 05 11.
Article in English | MEDLINE | ID: mdl-33463256

ABSTRACT

High invasion and metastasis are the major obstacles to successful breast cancertherapy. Indocyanine green (ICG), a photosensitizer for photothermal therapy (PTT), shows potent anticancer efficacy when combined with the chemotherapeutic drug doxorubicin (DOX). Human serum albumin (HSA), a biocompatible carrier material, has been successfully used for the delivery of paclitaxel (Abraxane). In addition, there are ICG functional binding regions in HSA. Thus, a smart assembled nanoplatform (DI@HSA NPs) was constructed to achieve the synergistic effects of chemo- photothermal therapy against breast cancer. Compared to free ICG and free DOX, DI@HSA NPs showed satisfactory stability and exhibited an enhanced tumor targeting capacity. The mild hyperthermia generated by DI@HSA NPs can not only cause tumor photothermal ablation and promote the uptake of DI@HSA NPs by 4T1 cells, but also protect the healthy tissues nearby the tumor from overheating injury. More importantly, DI@HSA NPs greatly amplified the infiltration of CD4+ T cells and CD8+ T cells, resulting in inhibited tumor growth and metastasis. DI@HSA NPs, as a simple biocompatible nanoagent, showed excellent inhibition of breast cancer growth and metastasis by chemo-photothermal therapy, providing a potential strategy for the future therapy of breast cancer.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Breast Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , Humans , Photothermal Therapy , Serum Albumin, Human
20.
Carbohydr Polym ; 229: 115435, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31826424

ABSTRACT

Micelles are one of the most investigated nanocarriers for drug delivery. In this study, polymeric micelles based on chitosan were prepared to explore the delivery mechanism which was critical for enhancing tumor targeting but still remain elusive. The chitosan polymer COSA was synthesized and the polymeric micelles showed good self-assembly ability, good dispersion stability and low toxicity. After being intravenously administered, the micelles were selectively taken up by circulating monocytes in a receptor-mediated way (almost 94% uptake in Ly-6Chi monocytes, below 7% in all other circulating cells) and reach the tumor with the subsequent travel of these cells. In addition, the micelles in macrophages (differentiated from circulating monocytes) can be exocytosed and subsequently taken up by cancer cells. The delivery mechanism of COSA micelles is directional for the novel strategies to enhance tumor targeting and the micelles are promising candidates for diseases in which monocytes are directly implicated.


Subject(s)
Chitosan/metabolism , Drug Carriers/metabolism , Micelles , Monocytes/metabolism , Animals , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Liberation , Endocytosis , Exocytosis , Female , Mice , Mice, Inbred BALB C , Neoplasms/metabolism , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL