Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 541
Filter
1.
J Colloid Interface Sci ; 669: 466-476, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38723535

ABSTRACT

Heterostructure engineering is considered a crucial strategy to modulate the intrinsic charge transfer behavior of materials, enhance catalytic activity, and optimize sulfur electrochemical processes. However, parsing the role of heterogeneous interface-structure-property relationships in heterostructures is still a key scientific issue to realize the efficient catalytic conversion of polysulfides. Based on this, molybdenum carbide (Mo2C) was successfully partial reduced to molybdenum metal (Mo) via a thermal reduction at high-temperature and the typical Mo-Mo2C-based Mott-Schottky heterostructures were simultaneously constructed, which realized the modulation of the electronic structure of Mo2C and optimized the conversion process of lithium polysulfides (LPS). Compared with single molybdenum carbide, the modulated molybdenum carbide acts as an electron donor with stronger Mo-S bonding strength as well as higher polysulfide adsorption energy, faster Li2S conversion kinetics, and greatly facilitates the adsorption → catalysis process of LPS. As a result, yolk-shell Mo-Mo2C heterostructure (C@Mo-Mo2C) exhibits excellent cycling performance as a sulfur host, with a discharge specific capacity of 488.41 mAh g-1 for C@Mo-Mo2C/S at 4 C and present an excellent high-rate cyclic performance accompanied by capacity decay rate of 0.08 % per cycle after 400 cycles at 2 C. Heterostructure-acting Mo2C electron distribution modulation engineering may contributes to the understanding of the structure-interface-property interaction law in heterostructures and further enables the efficient modulation of the chemical behavior of sulfur.

3.
Adv Mater ; : e2309205, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733334

ABSTRACT

Visible-light-driven photocatalytic oxidation by photogenerated holes has immense potential for environmental remediation applications. While the electron-mediated photoreduction reactions are often at the spotlight, active holes possess a remarkable oxidation capacity that can degrade recalcitrant organic pollutants, resulting in nontoxic byproducts. However, the random charge transfer and rapid recombination of electron-hole pairs hinder the accumulation of long-lived holes at the reaction center. Herein, a novel method employing defect-engineered indium (In) single-atom photocatalysts with nitrogen vacancy (Nv) defects, dispersed in carbon nitride foam (In-Nv-CNF), is reported to overcome these challenges and make further advances in photocatalysis. This Nv defect-engineered strategy produces a remarkable extension in the lifetime and an increase in the concentration of photogenerated holes in In-Nv-CNF. Consequently, the optimized In-Nv-CNF demonstrates a remarkable 50-fold increase in photo-oxidative degradation rate compared to pristine CN, effectively breaking down two widely used antibiotics (tetracycline and ciprofloxacin) under visible light. The contaminated water treated by In-Nv-CNF is completely nontoxic based on the growth of Escherichia coli. Structural-performance correlations between defect engineering and long-lived hole accumulation in In-Nv-CNF are established and validated through experimental and theoretical agreement. This work has the potential to elevate the efficiency of overall photocatalytic reactions from a hole-centric standpoint.

4.
Water Res ; 257: 121622, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38733961

ABSTRACT

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants that have been found in marine ecosystems. This review aims to explore the sources and mechanisms of PAHs and MPs mixed contamination in marine environments. Understanding the released sources of PAHs and MPs is crucial for proposing appropriate regulations on the release of these contaminants. Additionally, the mechanisms of co-occurrence and the role of MPs in distributing PAHs in marine ecosystems were investigated in detail. Moreover, the chemical affinity between PAHs and MPs was proposed, highlighting the potential mechanisms that lead to their persistence in marine ecosystems. Moreover, we delve into the various factors influencing the co-occurrence, chemical affinity, and distribution of mixed contaminants in marine ecosystems. These factors, including environmental characteristics, MPs properties, PAHs molecular weight and hydrophobicity, and microbial interactions, were critically examined. The co-contamination raises concerns about the potential synergistic effects on their degradation and toxicity. Interesting, few studies have reported the enhanced photodegradation and biodegradation of contaminants under mixed contamination compared to their individual remediation. However, currently, the remediation strategies reported for PAHs and MPs mixed contamination are scarce and limited. While there have been some initiatives to remove PAHs and MPs individually, there is a lack of research specifically targeting the removal of mixed contaminants. This deficiency highlights the need for further investigation and the development of effective remediation approaches for the efficient remediation of PAHs and MPs from marine ecosystems.

5.
Sci Data ; 11(1): 453, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704376

ABSTRACT

Water body (WB) extraction is the basic work of water resources management. Tibetan Plateau is one of the largest alpine lake systems in the world. However, research on the characteristics of water bodies (WBs) is mainly focused on large and medium WBs due to spatial resolution. This research presents a dataset containing a 2-m resolution map of WBs in 2020 based on Gaofen-1 data, and morphometric and landscape indices of WBs across the Tibetan Plateau. The Swin-UNet model is well performed with overall accuracy at 98%. The total area of WBs is 56354.6 km2 across Tibetan Plateau in 2020. The abundance compared with that from size-abundance relationship indicate WBs in the Tibetan Plateau conformed to the classic power scaling law. We evaluate the influence of spatial-resolution in WB extraction, which shows the dataset could be valuable to fill the gap of existing WBs map, especially for small waters. The dataset is valuable for revealing the spatial patterns of WBs, and understanding the impacts of climate change on water resources in Plateau.

6.
Nat Commun ; 15(1): 2951, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580660

ABSTRACT

Hepatitis B virus is a globally distributed pathogen and the history of HBV infection in humans predates 10000 years. However, long-term evolutionary history of HBV in Eastern Eurasia remains elusive. We present 34 ancient HBV genomes dating between approximately 5000 to 400 years ago sourced from 17 sites across Eastern Eurasia. Ten sequences have full coverage, and only two sequences have less than 50% coverage. Our results suggest a potential origin of genotypes B and D in Eastern Asia. We observed a higher level of HBV diversity within Eastern Eurasia compared to Western Eurasia between 5000 and 3000 years ago, characterized by the presence of five different genotypes (A, B, C, D, WENBA), underscoring the significance of human migrations and interactions in the spread of HBV. Our results suggest the possibility of a transition from non-recombinant subgenotypes (B1, B5) to recombinant subgenotypes (B2 - B4). This suggests a shift in epidemiological dynamics within Eastern Eurasia over time. Here, our study elucidates the regional origins of prevalent genotypes and shifts in viral subgenotypes over centuries.


Subject(s)
Hepatitis B virus , Human Migration , Humans , Hepatitis B virus/genetics , Phylogeny , Genotype , Biological Evolution , DNA, Viral/genetics
7.
Front Neurol ; 15: 1365902, 2024.
Article in English | MEDLINE | ID: mdl-38633536

ABSTRACT

Purpose: Sphingosine-1-phosphate (S1P) is a signaling lipid involved in many biological processes, including inflammatory and immune regulatory responses. The study aimed to determine whether admission S1P levels are associated with disease severity and prognosis after spontaneous intracerebral hemorrhage (ICH). Methods: Data of 134 patients with spontaneous ICH and 120 healthy controls were obtained from Biological Resource Sample Database of Intracerebral Hemorrhage at the First Affiliated Hospital of Zhengzhou University. Plasma S1P levels were measured. Regression analyses were used to analyze the association between S1P levels and admission and 90-day modified Rankin scale (mRS) scores. Receiver operating characteristic (ROC) curves assessed the predictive value of S1P levels for ICH severity and prognosis. Results: Patients with ICH exhibited elevated plasma S1P levels compared to the control group (median 286.95 vs. 239.80 ng/mL, p < 0.001). When divided patients into mild-to-moderate and severe groups according to their mRS scores both at admission and discharge, S1P levels were significantly elevated in the severe group compared to the mild-to-moderate group (admission 259.30 vs. 300.54, p < 0.001; 90-day 275.24 vs. 303.25, p < 0.001). The patients were divided into three groups with different concentration gradients, which showed significant statistical differences in admission mRS scores (3 vs. 4 vs. 5, p < 0.001), 90-day mRS scores (2.5 vs. 3 vs. 4, p < 0.001), consciousness disorders (45.5% vs. 68.2% vs. 69.6%, p = 0.033), ICU admission (29.5% vs. 59.1% vs. 89.1%, p < 0.001), surgery (15.9% vs. 47.7% vs. 82.6%, p < 0.001), intraventricular hemorrhages (27.3% vs. 61.4% vs. 65.2%, p < 0.001) and pulmonary infection (25% vs. 47.7% vs. 84.8%, p < 0.001). Multivariate analysis displayed that S1P level was an independent risk factor for disease severity (OR = 1.037, 95% CI = 1.020-1.054, p < 0.001) and prognosis (OR = 1.018, 95% CI = 1.006-1.030, p = 0.003). ROC curves revealed a predictive value of S1P levels with an area under the curve of 0.7952 (95% CI = 0.7144-0.8759, p < 0.001) for disease severity and 0.7105 (95% CI = 0.6227-0.7983, p < 0.001) for prognosis. Conclusion: Higher admission S1P is associated with worse initial disease severity and 90-day functional outcomes in intracerebral hemorrhage.

8.
Angew Chem Int Ed Engl ; : e202402070, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664999

ABSTRACT

Electrochemical CO2 reduction reaction (CO2RR) offers a sustainable strategy for producing fuels and chemicals. However, it suffers from sluggish CO2 activation and slow water dissociation. In this work, we construct a (P-O)δ- modified In catalyst that exhibits high activity and selectivity in electrochemical CO2 reduction to formate. A combination of in-situ characterizations and kinetic analyses indicate that (P-O)δ- has a strong interaction with K+(H2O)n, which effectively accelerates water dissociation to provide protons. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) measurements together with density functional theory (DFT) calculations disclose that (P-O)δ- modification leads to a higher valence state of In active site, thus promoting CO2 activation and HCOO* formation, while inhibiting competitive hydrogen evolution reaction (HER). As a result, the (P-O)δ- modified oxide-derived In catalyst exhibits excellent formate selectivity across a broad potential window with a formate Faradaic efficiency as high as 92.1% at a partial current density of ~200 mA cm-2 and a cathodic potential of -1.2 V vs. RHE in an alkaline electrolyte.

9.
J Sci Food Agric ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619157

ABSTRACT

BACKGROUND: The influences of abscisic acid (ABA) applications on precursors and gene expression in 3-alkyl-2-methoxypyrazines (MPs) biosynthetic pathway, MPs concentration and sensory evaluation of its derived peculiar odors in Cabernet Sauvignon grapes and wines were investigated. At the vineyard, ABA solution with 25, 100 and 400 mg L-1 (AT1, AT2 and AT3, respectively) and an aqueous solution (control) were sprayed three times from veraison to pre-harvest. RESULTS: Higher concentration ABA applications (AT2 and AT3) in grapes could significantly reduce MPs concentration and its derived peculiar odors in grapes and wines compared to a lower concentration ABA application (AT1) and control, with AT2 application having the strongest effect. The changes in MPs were mainly a result of the downregulated expression of VvOMTs genes at higher concentration ABA applications, independent of the levels of their potential precursors. CONCLUSION: The present study reveals that ABA application had the potential to decrease production of MPs in Cabernet Sauvignon grapes and wines, and this result provides reference values for the removal of unpleasant vegetable odors from Cabernet Sauvignon wines in production. © 2024 Society of Chemical Industry.

10.
Neurosurg Rev ; 47(1): 152, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605210

ABSTRACT

Background- Postoperative delirium is a common complication associated with the elderly, causing increased morbidity and prolonged hospital stay. However, its risk factors in chronic subdural hematoma patients have not been well studied. Methods- A total of 202 consecutive patients with chronic subdural hematoma at Peking University Third Hospital between January 2018 and January 2023 were enrolled. Various clinical indicators were analyzed to identify independent risk factors for postoperative delirium using univariate and multivariate regression analyses. Delirium risk prediction models were developed as a nomogram and a Markov chain. Results- Out of the 202 patients (age, 71 (IQR, 18); female-to-male ratio, 1:2.7) studied, 63 (31.2%) experienced postoperative delirium. Univariate analysis identified age (p < 0.001), gender (p = 0.014), restraint belt use (p < 0.001), electrolyte imbalance (p < 0.001), visual analog scale score (p < 0.001), hematoma thickness (p < 0.001), midline shift (p < 0.001), hematoma side (p = 0.013), hematoma location (p = 0.018), and urinal catheterization (p = 0.028) as significant factors. Multivariate regression analysis confirmed the significance of restraint belt use (B = 7.657, p < 0.001), electrolyte imbalance (B = -3.993, p = 0.001), visual analog scale score (B = 2.331, p = 0.016), and midline shift (B = 0.335, p = 0.007). Hematoma thickness and age had no significant impact. Conclusion- Increased midline shift and visual analog scale scores, alongside restraint belt use and electrolyte imbalance elevate delirium risk in chronic subdural hematoma surgery. Our prediction models may offer reference value in this context.


Subject(s)
Emergence Delirium , Hematoma, Subdural, Chronic , Humans , Male , Female , Aged , Hematoma, Subdural, Chronic/complications , Emergence Delirium/complications , Retrospective Studies , Risk Factors , Risk Assessment , Electrolytes
11.
Sci China Life Sci ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38568343

ABSTRACT

Detecting genes that affect specific traits (such as human diseases and crop yields) is important for treating complex diseases and improving crop quality. A genome-wide association study (GWAS) provides new insights and directions for understanding complex traits by identifying important single nucleotide polymorphisms. Many GWAS summary statistics data related to various complex traits have been gathered recently. Studies have shown that GWAS risk loci and expression quantitative trait loci (eQTLs) often have a lot of overlaps, which makes gene expression gradually become an important intermediary to reveal the regulatory role of GWAS. In this review, we review three types of gene-trait association detection methods of integrating GWAS summary statistics and eQTLs data, namely colocalization methods, transcriptome-wide association study-oriented approaches, and Mendelian randomization-related methods. At the theoretical level, we discussed the differences, relationships, advantages, and disadvantages of various algorithms in the three kinds of gene-trait association detection methods. To further discuss the performance of various methods, we summarize the significant gene sets that influence high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride reported in 16 studies. We discuss the performance of various algorithms using the datasets of the four lipid traits. The advantages and limitations of various algorithms are analyzed based on experimental results, and we suggest directions for follow-up studies on detecting gene-trait associations.

12.
Sci Immunol ; 9(94): eadh2334, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669316

ABSTRACT

T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.


Subject(s)
Neoplasms , T-Lymphocytes , Up-Regulation , Animals , Female , Humans , Mice , Cell Line, Tumor , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , Neoplasms/immunology , Phospholipases A/immunology , Phospholipases A/genetics , Phospholipases A2/immunology , T-Lymphocytes/immunology , Up-Regulation/immunology
13.
Sci Rep ; 14(1): 9679, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678045

ABSTRACT

Citri Reticulatae Pericarpium is a traditional Chinese medicine with extremely high health benefits as well as clinical value. In vivo and in vitro tests have proved that its main active secondary metabolites are flavonoids. However, they have not been comprehensively analyzed up to now mainly due to lack of suitable analysis method. To solve this problem, a novel strategy based on precursor ions locked and targeted MS/MS analysis was proposed. Firstly, the database of the flavonoids previously isolated from Citri Reticulatae Pericarpium was established to obtain the characteristics of their precursor ions. Secondly, after performing the full MS scan of the extract, all compounds in the total ion chromatogram were extracted by Compound Discoverer software. Thirdly, the precursor ions of the flavonoids were locked from the extracted compounds according to their characteristics, forming a precursor ions list. Finally, the precursor ions in the constructed list were performed targeted MS/MS analysis for structures characterization. As a result, total 187 flavonoids were successfully identified, and except for flavones, flavonols as well as dihydroflavones, some chalcones were also characterized from Citri Reticulatae Pericarpium for the first time.


Subject(s)
Citrus , Flavonoids , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Flavonoids/analysis , Flavonoids/chemistry , Citrus/chemistry , Ions , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
14.
J Ethnopharmacol ; 329: 118145, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38582153

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY: We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS: The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS: The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-ß protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION: KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.


Subject(s)
Alzheimer Disease , Autophagy , Cognitive Dysfunction , Drugs, Chinese Herbal , Inflammasomes , Mice, Transgenic , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Autophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Disease Models, Animal , Presenilin-1/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Signal Transduction/drug effects , Maze Learning/drug effects , Mice, Inbred C57BL , Protein Kinases
15.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675882

ABSTRACT

As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.


Subject(s)
Pyrococcus furiosus , Viral Nonstructural Proteins , Zika Virus Infection , Zika Virus , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Humans , Viral Nonstructural Proteins/genetics , Pyrococcus furiosus/genetics , Argonaute Proteins/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Genome, Viral
16.
Neurotherapeutics ; : e00368, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38688786

ABSTRACT

In the context of stroke and revascularization therapy, brain ischemia-reperfusion injury is a significant challenge that leads to oxidative stress and inflammation. Central to the cell's intrinsic immunity is the cGAS-STING pathway, which is typically activated by unusual DNA structures. The involvement of oxidized mitochondrial DNA (ox-mtDNA)-an oxidative stress byproduct-in this type of neurological damage has not been fully explored. This study is among the first to examine the effect of ox-mtDNA on the innate immunity of neurons following ischemia-reperfusion injury. Using a rat model of transient middle cerebral artery occlusion and a cellular model of oxygen-glucose deprivation/reoxygenation, we have discovered that ox-mtDNA activates the cGAS-STING pathway in neurons. Importantly, pharmacologically limiting the release of ox-mtDNA into the cytoplasm reduces inflammation and improves neurological functions. Our findings suggest that targeting ox-mtDNA release may be a valuable strategy to attenuate brain ischemia-reperfusion injury following revascularization therapy for acute ischemic stroke.

17.
Signal Transduct Target Ther ; 9(1): 95, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653979

ABSTRACT

Bietti crystalline corneoretinal dystrophy is an inherited retinal disease caused by mutations in CYP4V2, which results in blindness in the working-age population, and there is currently no available treatment. Here, we report the results of the first-in-human clinical trial (NCT04722107) of gene therapy for Bietti crystalline corneoretinal dystrophy, including 12 participants who were followed up for 180-365 days. This open-label, single-arm exploratory trial aimed to assess the safety and efficacy of a recombinant adeno-associated-virus-serotype-2/8 vector encoding the human CYP4V2 protein (rAAV2/8-hCYP4V2). Participants received a single unilateral subretinal injection of 7.5 × 1010 vector genomes of rAAV2/8-hCYP4V2. Overall, 73 treatment-emergent adverse events were reported, with the majority (98.6%) being of mild or moderate intensity and considered to be procedure- or corticosteroid-related; no treatment-related serious adverse events or local/systemic immune toxicities were observed. Compared with that measured at baseline, 77.8% of the treated eyes showed improvement in best-corrected visual acuity (BCVA) on day 180, with a mean ± standard deviation increase of 9.0 ± 10.8 letters in the 9 eyes analyzed (p = 0.021). By day 365, 80% of the treated eyes showed an increase in BCVA, with a mean increase of 11.0 ± 10.6 letters in the 5 eyes assessed (p = 0.125). Importantly, the patients' improvement observed using multifocal electroretinogram, microperimetry, and Visual Function Questionnaire-25 further supported the beneficial effects of the treatment. We conclude that the favorable safety profile and visual improvements identified in this trial encourage the continued development of rAAV2/8-hCYP4V2 (named ZVS101e).


Subject(s)
Corneal Dystrophies, Hereditary , Cytochrome P450 Family 4 , Dependovirus , Genetic Therapy , Retinal Diseases , Humans , Male , Female , Middle Aged , Adult , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/therapy , Corneal Dystrophies, Hereditary/pathology , Dependovirus/genetics , Cytochrome P450 Family 4/genetics , Genetic Vectors/genetics , Visual Acuity
19.
Nanoscale ; 16(13): 6383-6401, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38465763

ABSTRACT

With the goal of sustainable development, manufacturing continuous high-performance fibers based on sustainable resources is an emerging research direction. However, compared to traditional synthetic fibers, plant fibers have limited length/diameter and uncontrollable natural defects, while regenerated cellulose fibers such as viscose and Lyocell suffer from inferior mechanical properties. Wet-spun fibers based on nanocelluloses especially cellulose nanofibrils (CNFs) offer superior mechanical performance since CNFs are the fundamental high-performance building blocks of plant cell walls. This review aims to summarize the progress of making CNF wet-spun fibers, emphasizing on the whole wet spinning process including spinning suspension preparation, spinning, coagulation, washing, drying and post-stretching steps. By establishing the relationships between the nano-scale assembling structure and the macroscopic changes in the CNF dope from gels to dried fibers, effective methods and strategies to improve the mechanical properties of the final fibers are analyzed and proposed. Based on this, the opportunities and challenges for potential industrial-scale production are discussed.

20.
Heliyon ; 10(6): e27634, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533065

ABSTRACT

Polycomb group RING finger (PCGF) proteins, a crucial subunits of the Polycomb complex, plays an important role in regulating gene expression, embryonic development, and cell fate determination. In our research, we investigated Pcgf5, one of the six PCGF homologs, and its impact on the differentiation of P19 cells into neural stem cells. Our findings revealed that knockdown of Pcgf5 resulted in a significant decrease in the expression levels of the neuronal markers Sox2, Zfp521, and Pax6, while the expression levels of the pluripotent markers Oct4 and Nanog increased. Conversely, Pcgf5 overexpression upregulated the expression of Sox2 and Pax6, while downregulating the expression of Oct4 and Nanog. Additionally, our analysis revealed that Pcgf5 suppresses Wnt3 expression via the activation of Notch1/Hes1, and ultimately governs the differentiation fate of neural stem cells. To further validate our findings, we conducted in vivo experiments in zebrafish. We found that knockdown of pcgf5a using morpholino resulted in the downregulated expression of neurodevelopmental genes such as sox2, sox3, and foxg1 in zebrafish embryos. Consequently, these changes led to neurodevelopmental defects. In conclusion, our study highlights the important role of Pcgf5 in neural induction and the determination of neural cell fate.

SELECTION OF CITATIONS
SEARCH DETAIL
...