Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4703, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543621

ABSTRACT

TGFß signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFß signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFß and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFß/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFß therapy efficacy. Our data suggest that TGFß works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Transforming Growth Factor beta , Female , Animals , Mice , Cell Differentiation , CD8-Positive T-Lymphocytes/immunology , Stem Cells , B7-H1 Antigen/antagonists & inhibitors , Transforming Growth Factor beta/antagonists & inhibitors , Interferon-gamma/immunology , T-Cell Exhaustion , Immune Checkpoint Inhibitors/pharmacology , Mice, Inbred BALB C , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , RNA-Seq
2.
Cancer Immunol Res ; 7(6): 963-976, 2019 06.
Article in English | MEDLINE | ID: mdl-31064777

ABSTRACT

Exhausted T cells have been described in cancer patients and murine tumor models largely based on their expression of various inhibitory receptors. Understanding of the functional attributes of these cells is limited. Here, we report that among CD8+ T cells in commonly used syngeneic tumor models, the coexpression of inhibitory receptors PD-1, LAG3, and TIM3 defined a group of highly activated and functional effector cells. Coexpression of these receptors further enriched for antigen-specific cells with increased T-cell receptor clonality. Anti-PD-L1 treatment increased the number and activation of these triple-positive CD8+ T cells without affecting the density of PD-1- cells. The intratumoral density of CD8+ T cells coexpressing inhibitory receptors negatively correlated with tumor burden. The density ratio and pretreatment phenotype of CD8+ T cells coexpressing inhibitory receptors was positively correlated with response across a variety of tumor models. Our results demonstrate that coexpression of inhibitory receptors is not a signifier of exhausted T cells, but rather can define a group of activated and functional effector cells in syngeneic tumor models. In the cancer setting, these cells could represent a heterogeneous population of not only exhausted but also highly activated cells responsive to treatment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Costimulatory and Inhibitory T-Cell Receptors/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Neoplasms/etiology , Neoplasms/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor , Cell Line, Tumor , Cytotoxicity, Immunologic , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Female , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Isografts , Mice , Neoplasms/pathology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
3.
Cancer Res ; 79(7): 1493-1506, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30679180

ABSTRACT

Checkpoint inhibitors like anti-PD1/PD-L1 have demonstrated significant therapeutic efficacy in a subset of patients partly through reinvigoration of CD8 T cells. However, their impact on myeloid cells remains largely unknown. Here, we report that anti-PD-L1 treatment favorably impacts the phenotype and function of tumor macrophages by polarizing the macrophage compartment toward a more proinflammatory phenotype. This phenotype was characterized by a decrease in Arginase-I (ARG1) expression and an increase in iNOS, MHCII, and CD40 expression. Whole-transcriptome profiling further confirmed extensive polarization of both tumor monocytes and macrophages from a suppressive to a proinflammatory, immunostimulatory phenotype. This polarization was driven mainly through IFNγ and was associated with enhanced T-cell activity. Transfer of monocytes into anti-PD-L1-treated tumor-bearing mice led to macrophage differentiation into a more proinflammatory phenotype, with an increase in CD8 T cells expressing granzyme-B and an increase in the CD8/Treg ratio compared with control-treated mice. Although in responsive tumor models, anti-PD-L1 treatment remodeled the macrophage compartment with beneficial effects on T cells, both macrophage reprogramming and depletion were needed to maximize anti-PD-L1 responses in a tumor immune contexture with high macrophage burden. Our results demonstrate that anti-PD-L1 treatment can favorably remodel the macrophage compartment in responsive tumor models toward a more proinflammatory phenotype, mainly through increased IFNγ levels. They also suggest that directly targeting these cells with reprogramming and depleting agents may further augment the breadth and depth of response to anti-PD-L1 treatment in less responsive or more macrophage-dense tumor microenvironments. SIGNIFICANCE: This work demonstrates that increased IFNγ signaling following anti-PD-L1 treatment can remodel the macrophage compartment to enhance T-cell responses.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1493/F1.large.jpg.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Macrophages/metabolism , Neoplasms/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Polarity , Cell Proliferation , Female , Humans , Interferon-gamma/metabolism , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Microenvironment
4.
Nature ; 554(7693): 544-548, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29443960

ABSTRACT

Therapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor ß (TGFß) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFß-blocking and anti-PD-L1 antibodies reduced TGFß signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFß shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/drug effects , Transforming Growth Factor beta/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/immunology , Urothelium/pathology , Animals , Antibodies/immunology , Antibodies/pharmacology , Antibodies/therapeutic use , Antibodies, Monoclonal, Humanized , Antigens, Neoplasm/analysis , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Cycle Checkpoints/drug effects , Cohort Studies , Collagen/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Fibroblasts/metabolism , Humans , Immunotherapy , Mice , Mutation , Neoplasm Metastasis , Phenotype , Signal Transduction/drug effects , Transforming Growth Factor beta/antagonists & inhibitors , Treatment Outcome , Tumor Microenvironment/immunology , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology , Urothelium/drug effects , Urothelium/immunology
5.
Immunity ; 44(3): 609-621, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26944201

ABSTRACT

Targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) can induce regression of tumors bearing activating mutations in the Ras pathway but rarely leads to tumor eradication. Although combining MEK inhibition with T-cell-directed immunotherapy might lead to more durable efficacy, T cell responses are themselves at least partially dependent on MEK activity. We show here that MEK inhibition did profoundly block naive CD8(+) T cell priming in tumor-bearing mice, but actually increased the number of effector-phenotype antigen-specific CD8(+) T cells within the tumor. MEK inhibition protected tumor-infiltrating CD8(+) T cells from death driven by chronic TCR stimulation while sparing cytotoxic activity. Combining MEK inhibition with anti-programmed death-ligand 1 (PD-L1) resulted in synergistic and durable tumor regression even where either agent alone was only modestly effective. Thus, despite the central importance of the MAP kinase pathway in some aspects of T cell function, MEK-targeted agents can be compatible with T-cell-dependent immunotherapy.


Subject(s)
B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Carcinoma/therapy , Colonic Neoplasms/therapy , Immunotherapy , Animals , Antibodies, Monoclonal/administration & dosage , Apoptosis , Azetidines/administration & dosage , Azetidines/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Carcinoma/immunology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Colonic Neoplasms/immunology , Drug Synergism , Drug Therapy , Drug Therapy, Combination , Extracellular Signal-Regulated MAP Kinases , Humans , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Molecular Targeted Therapy , Neoplasm Transplantation , Piperidines/administration & dosage , Piperidines/pharmacology
6.
Cancer Cell ; 26(6): 923-937, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25465800

ABSTRACT

Tumors constitute highly suppressive microenvironments in which infiltrating T cells are "exhausted" by inhibitory receptors such as PD-1. Here we identify TIGIT as a coinhibitory receptor that critically limits antitumor and other CD8(+) T cell-dependent chronic immune responses. TIGIT is highly expressed on human and murine tumor-infiltrating T cells, and, in models of both cancer and chronic viral infection, antibody coblockade of TIGIT and PD-L1 synergistically and specifically enhanced CD8(+) T cell effector function, resulting in significant tumor and viral clearance, respectively. This effect was abrogated by blockade of TIGIT's complementary costimulatory receptor, CD226, whose dimerization is disrupted upon direct interaction with TIGIT in cis. These results define a key role for TIGIT in inhibiting chronic CD8(+) T cell-dependent responses.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Neoplasms/immunology , Receptors, Immunologic/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CHO Cells , Cell Line, Tumor , Cricetulus , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Lymphocytic Choriomeningitis/pathology , Mice , Mice, Inbred BALB C , Neoplasms/pathology , Protein Multimerization , Rats
7.
Mol Ther ; 18(8): 1482-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20551918

ABSTRACT

We tested the hypothesis that oral supplementation with the endothelial nitric oxide synthase (eNOS) cofactor tetrahydrobiopterin (BH(4)) improved the therapeutic efficacy of eNOS gene transfer in the ischemic rat hindlimb. BH(4) or vehicle were begun 1 week before induction of hindlimb ischemia, whereas recombinant adenovirus containing bovine eNOS cDNA (AdeNOS) or vehicle [phosphate-buffered saline (PBS)] was infused intra-arterially into the ischemic hindlimb 10 days after induction of ischemia. Rats receiving co-treatment with dietary BH(4) and eNOS gene transfer (the [eNOS, +BH(4)] group) had greater eNOS expression, phospho-eNOS expression (Ser(1177)), Ca(2+)-dependent NOS activity, and nitrite + nitrate concentrations in the ischemic gastrocnemius than did rats receiving AdeNOS alone. The [eNOS, +BH(4)] group demonstrated less nitrotyrosine and a higher ratio of reduced:oxidized glutathione (GSH:GSSG) in the ischemic gastrocnemius muscle than did rats receiving AdeNOS alone. The [eNOS, +BH(4)] group had greater flow recovery and a higher capillary:myocyte ratio in the ischemic hindlimb than did rats receiving AdeNOS alone. Finally, the [eNOS,+BH(4)] group had less necrosis of hindlimb muscles than rats given AdeNOS alone. We conclude that adjunctive dietary therapy with BH(4) increases the beneficial effects of eNOS gene transfer within the ischemic gastrocnemius muscle, as evidenced by increased nitric oxide (NO) production, diminished oxidative stress, enhanced flow recovery, and reduced necrosis.


Subject(s)
Adenoviridae/genetics , Biopterins/analogs & derivatives , Ischemia/drug therapy , Ischemia/therapy , Lower Extremity/pathology , Nitric Oxide Synthase Type III/metabolism , Animals , Biopterins/therapeutic use , Blotting, Western , Glutathione/metabolism , Immunohistochemistry , Ischemia/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nitric Oxide Synthase Type III/genetics , Rats , Rats, Sprague-Dawley
8.
J Vasc Res ; 47(6): 519-30, 2010.
Article in English | MEDLINE | ID: mdl-20431300

ABSTRACT

We tested the hypothesis that oxidized low-density lipoprotein (oxLDL)-induced inactivation of Akt within endothelial progenitor cells (EPCs) is mediated at the level of phosphoinositide 3-kinase (PI3K), specifically by nitrosylation of the p85 subunit of PI3K, and that this action is critical in provoking oxLDL-induced EPC apoptosis. Hypercholesterolemic ApoE null mice had a significant reduction of the phosphorylated Akt (p-Akt)/Akt ratio in EPCs, as well as a greater percentage of apoptosis in these cells than EPCs isolated from wild-type (WT) C57Bl/6 mice. EPCs were isolated from WT spleen and exposed to oxLDL in vitro. oxLDL increased O2⁻ and H2O2 in these cells and induced a dose- and time-dependent reduction in the p-Akt/Akt ratio and increase in EPC apoptosis. These effects were significantly reduced by the antioxidants superoxide dismutase, L-NAME, epicatechin and FeTPPs. oxLDL also induced nitrosylation of the p85 subunit of PI3K and subsequent dissociation of the p85 and p110 subunits, an effect significantly reduced by all the antioxidant agents tested. EPC transfection with a constitutively active Akt isoform (Ad-myrAkt) significantly reduced oxLDL-induced apoptosis of WT EPCs. The present findings indicate that oxLDL disrupts the PI3K/Akt signaling pathway at the level of p85 in EPCs. This dysfunction can be reversed by ex vivo antioxidant therapy.


Subject(s)
Apoptosis , Endothelial Cells/enzymology , Hypercholesterolemia/enzymology , Lipoproteins, LDL/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stem Cells/enzymology , Animals , Antioxidants/pharmacology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/drug effects , Cells, Cultured , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Enzyme Activation , Hydrogen Peroxide/metabolism , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Oxidative Stress , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/pathology , Superoxides/metabolism , Time Factors , Transfection
9.
J Vasc Surg ; 51(1): 165-73, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19879098

ABSTRACT

OBJECTIVE: The goals of this study were to determine if endothelial nitric oxide synthase (eNOS) affects both early and late collateral arterial adaptation and blood flow recovery after severe limb ischemia in a mouse model and to determine if eNOS-derived NO is necessary for recruitment of chemokine (C-X-C motif) receptor 4 (CXCR4)(+) vascular endothelial growth factor receptor-1 (VEGFR1)(+) hemangiocytes to the site of ischemia. METHODS: Two studies were completed. In the first, hind limb ischemia was induced by unilateral femoral artery excision in three groups: C57Bl6 (wild-type), eNOS(-/-), and C57Bl/6 mice treated with N(G)-nitro-L-arginine methyl ester (L-NAME) from 1 day before excision through day 3 after excision (early L-NAME group). These groups were studied on day 3 after induction of ischemia. In the second study, hind limb ischemia was induced in C57Bl/6 mice (wild-type) and C57Bl/6 mice treated with L-NAME from days 3 through 28 after induction of ischemia. These groups were studied day 28 after ischemia induction. Dependent variables included hind limb perfusion, collateral artery diameter, and the number and location of hemangiocytes within the ischemic hind limb. RESULTS: In the first study, toe gangrene developed in the eNOS(-/-) and early L-NAME treatment groups by day 2. These groups demonstrated less blood flow recovery and smaller collateral artery diameter than the wild-type group. Hemangiocytes were present within the adventitia of collateral arteries in the wild-type group but were only sparsely present, in a random pattern, in the eNOS(-/-) and early L-NAME treatment groups. In the second study, the late L-NAME group showed less blood flow recovery and smaller collateral artery diameter on day 28 of ischemia than the wild-type group. Hemangiocytes were present in a pericapillary distribution in the wild-type group, but were present only sparsely in the late L-NAME treatment group. CONCLUSION: Early (day 3) and late (day 28) adaptive responses to hind limb ischemia both require eNOS-derived NO. NO is necessary for normal hemangiocyte recruitment to the ischemic tissue.


Subject(s)
Collateral Circulation , Ischemia/enzymology , Muscle, Skeletal/blood supply , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Regional Blood Flow , Animals , Chemotaxis , Collateral Circulation/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gangrene , Hindlimb , Ischemia/pathology , Ischemia/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/genetics , Receptors, CXCR4/metabolism , Recovery of Function , Regional Blood Flow/drug effects , Stem Cells/metabolism , Time Factors , Toes/pathology , Vascular Endothelial Growth Factor Receptor-1/metabolism
10.
J Vasc Surg ; 48(6): 1546-58, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19118738

ABSTRACT

BACKGROUND: Most current animal models of hindlimb ischemia use acute arterial occlusion that does not accurately reflect the pathogenesis of gradual arterial occlusion in humans. We, therefore, developed the first mouse model of gradual arterial occlusion and tested the hypothesis that the mechanisms regulating blood flow recovery are critically dependent on the rate of arterial occlusion. METHODS: Gradual arterial occlusion was induced by placing ameroid constrictors on the proximal and distal left femoral artery, and ligating the femoral arterial branches (n = 36). Acute arterial occlusion was accomplished by excising the left femoral artery (n = 36). The blood flow recovery was studied by laser Doppler imaging. Differential gene expression between these two models was assessed by quantitative real-time polymerase chain reactions (PCR). Inflammatory and progenitor cells recruitment were determined by immunohistochemistry. RESULTS: We found that hypoxia-related genes increased significantly in the calf, but not in the thigh, after gradual and acute femoral arterial occlusion (P < .05). Shear-stress dependent genes and inflammatory genes were upregulated immediately in the thigh only after acute femoral arterial occlusion (P < .05). These differences in gene expression were consistent with increased SDF-1alpha expression, recruitment of macrophages and hemangiocytes, and higher blood flow recovery after acute arterial occlusion than after gradual arterial occlusion (P < .05). CONCLUSION: This is the first study to show the mechanisms that regulate blood flow recovery are critically dependent on the rate of arterial occlusion. This novel model of gradual arterial occlusion may more closely resemble the human diseases, and may provide more accurate mechanistic insights for creating novel molecular therapies.


Subject(s)
Arterial Occlusive Diseases/physiopathology , Blood Flow Velocity/physiology , Chemokine CXCL12/genetics , Femoral Artery/physiology , Gene Expression , RNA, Messenger/genetics , Recovery of Function/physiology , Acute Disease , Animals , Arterial Occlusive Diseases/genetics , Arterial Occlusive Diseases/metabolism , Chemokine CXCL12/biosynthesis , Chronic Disease , Disease Models, Animal , Disease Progression , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Immunohistochemistry , Laser-Doppler Flowmetry , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Polymerase Chain Reaction
11.
Dev Dyn ; 235(2): 382-94, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16278890

ABSTRACT

The localization of contractile and regulatory proteins in early stages of epaxial primary myotome development was analyzed by immunofluorescence microscopy. Contractile proteins that appear in an ordered sequence in the rostro-caudal axis of somite development were found to reiterate that sequence in the dorso-medial-to-ventro-lateral axis of primary epaxial myotome development. Pair-wise localization of MyoD-titin, desmin-titin, and desmin-myosin defined three zones extending from the dermomyotome dorso-medial lip (DML) into the primary myotome layer. Zones M1 and M2, which were positive for MyoD + titin and MyoD + titin + desmin, respectively, were restricted to the dorso-medial-most extremity of the myotome layer and did not expand during the course of myotome development. Zone M3 was positive for MyoD, desmin, titin, myosin, and cardiac troponin T and was the only zone that expanded during primary myotome development. Myotome fibers in zone M3 were unit-length, spanning the full rostro-caudal axis of the myotome while fibers in zones M1 and M2 were shorter than unit length. Anti-myoD immunofluorescence, when detected in cells lacking contractile-protein-positive cytoplasm, was restricted to the DML and nascent myotome cells immediately subjacent to the DML. These results demonstrate a dynamic spatio-temporal sequence in the differentiation program of nascent myotome cells as they emerge from the DML; zones M1 and M2 reflect standing waves of sequential contractile protein activation during the maturation of nascent myotomal myoblasts, while the expanding zone M3 reflects the accumulation of mature myotome fibers expressing a full cohort contractile proteins.


Subject(s)
Cell Differentiation , Contractile Proteins/metabolism , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Animals , Chick Embryo , Connectin , Desmin/metabolism , Gene Expression Regulation, Developmental , Muscle Proteins/metabolism , Myosins/metabolism , Protein Kinases/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...