Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.269
Filter
1.
BMC Med ; 22(1): 189, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715017

ABSTRACT

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Subject(s)
Endothelial Cells , Glucose , Hyperalgesia , Sleep Deprivation , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Glucose/metabolism , Endothelial Cells/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Male , Sleep Deprivation/complications , Glycolysis/physiology , Disease Models, Animal , Mice, Inbred C57BL
2.
BMC Psychiatry ; 24(1): 340, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715019

ABSTRACT

PURPOSE: To explore the mediating effect of hope in the relationships between social support and self-esteem with psychological resilience among patients with stroke survivors in early rehabilitation. METHODS: A cross-sectional study design was adopted. Data from a cross-sectional survey of 210 patients undergoing early stroke rehabilitation were analyzed using structural equation modeling. The variables of interest were measured using the Connor Davidson Resilience Scale, the Social Support Rating Scale, the Herth Hope Index, and the Self-Esteem Scale. This article reports according to the STROBE checklist. RESULTS: A positive relationship was found between social support and psychological resilience (ß1 = 0.548), which was mediated by hope (ß2 = 0.114), and social support had significant direct effect on resilience (ß3 = 0.434). A positive relationship was also found between self-esteem and psychological resilience (ß4 = 0.380), which was mediated by hope (ß5 = 0.200), and self-esteem had significant direct effect on resilience (ß6 = 0.179). CONCLUSION: According to the results of this study, some strategies can be incorporated into the rehabilitation process to enhance psychological resilience, such as cultivating individual personality characteristics and improving patients' social relationships. In the future, we need to explore methods for improving psychological resilience among patients with stroke in combination with their risk factors to improve their quality of life and reduce the incidence of post-stroke depression.


Subject(s)
Hope , Resilience, Psychological , Self Concept , Social Support , Stroke Rehabilitation , Stroke , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Aged , Stroke/psychology , Stroke Rehabilitation/psychology , Adult
3.
Cardiovasc Diabetol ; 23(1): 155, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715023

ABSTRACT

BACKGROUND: Given the increasing attention to glycemic variability (GV) and its potential implications for cardiovascular outcomes. This study aimed to explore the impact of acute GV on short-term outcomes in Chinese patients with ST-segment elevation myocardial infarction (STEMI). METHODS: This study enrolled 7510 consecutive patients diagnosed with acute STEMI from 274 centers in China. GV was assessed using the coefficient of variation of blood glucose levels. Patients were categorized into three groups according to GV tertiles (GV1, GV2, and GV3). The primary outcome was 30-day all-cause death, and the secondary outcome was major adverse cardiovascular events (MACEs). Cox regression analyses were conducted to determine the independent correlation between GV and the outcomes. RESULTS: A total of 7136 patients with STEMI were included. During 30-days follow-up, there was a significant increase in the incidence of all-cause death and MACEs with higher GV tertiles. The 30-days mortality rates were 7.4% for GV1, 8.7% for GV2 and 9.4% for GV3 (p = 0.004), while the MACEs incidence rates was 11.3%, 13.8% and 15.8% for the GV1, GV2 and GV3 groups respectively (p < 0.001). High GV levels during hospitalization were significantly associated with an increased risk of 30-day all-cause mortality and MACEs. When analyzed as a continuous variable, GV was independently associated with a higher risk of all-cause mortality (hazard ratio [HR] 1.679, 95% confidence Interval [CI] 1.005-2.804) and MACEs (HR 2.064, 95% CI 1.386-3.074). Additionally, when analyzed as categorical variables, the GV3 group was found to predict an increased risk of MACEs, irrespective of the presence of diabetes mellitus (DM). CONCLUSION: Our study findings indicate that a high GV during hospitalization was significantly associated with an increased risk of 30-day all-cause mortality and MACE in Chinese patients with STEMI. Moreover, acute GV emerged as an independent predictor of increased MACEs risk, regardless of DM status.


Subject(s)
Biomarkers , Blood Glucose , ST Elevation Myocardial Infarction , Humans , Male , Female , Middle Aged , ST Elevation Myocardial Infarction/mortality , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/therapy , Blood Glucose/metabolism , Aged , China/epidemiology , Time Factors , Risk Factors , Risk Assessment , Biomarkers/blood , Cause of Death , Incidence , Retrospective Studies , Treatment Outcome
4.
J Fluoresc ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722498

ABSTRACT

In this study, we present a novel near-infrared (NIR) fluorescent probe Nile-ONO designed for the selective and sensitive detection of ONOO-. The probe Nile-ONO employed Nile red as the fluorophore, with diphenylphosphinate serving as the reaction site. In the presence of ONOO-, the probe Nile-ONO exhibits remarkable fluorescence enhancement at 659 nm, with a response time of less than 20 min and a low detection limit of 0.32 µM. Importantly, MTT assays demonstrate low cytotoxicity in living cells. Furthermore, Nile-ONO has excellent imaging capabilities for endogenous ONOO-. Overall, this work introduces a valuable new method for the rapid detection of ONOO- in biological systems.

5.
Food Chem ; 452: 139522, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38723568

ABSTRACT

ß-lactoglobulin (ß-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting ß-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using ß-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to ß-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for ß-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with ß-Lg. Therefore, this peptide can be used for the recognition of ß-Lg, becoming a new recognition element for detecting ß-Lg.

6.
Res Sq ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38746402

ABSTRACT

Background X-linked Dystonia-Parkinsonism(XDP) is an adult-onset neurodegenerative disorder that results in the loss of striatal medium spiny neurons (MSNs). XDP is associated with disease-specific mutations in and around the TAF1 gene. This study highlights the utility of directly reprogrammed MSNs from fibroblasts of affected XDP individuals as a platform that captures cellular and epigenetic phenotypes associated with XDP-related neurodegeneration. In addition, the current study demonstrates the neuroprotective effect of SAK3 currently tested in other neurodegenerative diseases. Methods XDP fibroblasts from three independent patients as well as age- and sex-matched control fibroblasts were used to generate MSNs by direct neuronal reprogramming using miRNA-9/9*-124 and thetranscription factors CTIP2 , DLX1 -P2A- DLX2 , and MYT1L . Neuronal death, DNA damage, and mitochondrial health assays were carried out to assess the neurodegenerative state of directly reprogrammed MSNs from XDP patients (XDP-MSNs). RNA sequencing and ATAC sequencing were performed to infer changes in the transcriptomic and chromatin landscapesof XDP-MSNs compared to those of control MSNs (Ctrl-MSNs). Results Our results show that XDP patient fibroblasts can be successfully reprogrammed into MSNs and XDP-MSNs display several degenerative phenotypes, including neuronal death, DNA damage, and mitochondrial dysfunction, compared to Ctrl-MSNs reprogrammed from age- and sex-matched control individuals' fibroblasts. In addition, XDP-MSNs showed increased vulnerability to TNFα -toxicity compared to Ctrl-MSNs. To dissect the altered cellular state in XDP-MSNs, we conducted transcriptomic and chromatin accessibility analyses using RNA- and ATAC-seq. Our results indicate that pathways related to neuronal function, calcium signaling, and genes related to other neurodegenerative diseases are commonly altered in XDP-MSNs from multiple patients. Interestingly, we found that SAK3, a T-type calcium channel activator, that may have therapeutic values in other neurodegenerative disorders, protected XDP-MSNs from neuronal death. Notably, we found that SAK3-mediated alleviation of neurodegeneration in XDP-MSNs was accompanied by gene expression changes toward Ctrl-MSNs.

7.
Front Med (Lausanne) ; 11: 1390878, 2024.
Article in English | MEDLINE | ID: mdl-38737762

ABSTRACT

Background: The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods: In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results: A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion: Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.

8.
Heliyon ; 10(9): e30505, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726194

ABSTRACT

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

9.
Metabolism ; : 155933, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729601

ABSTRACT

AIMS/HYPOTHESIS: cGAS (cyclic GMP-AMP synthase) has been implicated in various cellular processes, but its role in ß-cell proliferation and diabetes is not fully understood. This study investigates the impact of cGAS on ß-cell proliferation, particularly in the context of diabetes. METHODS: Utilizing mouse models, including cGAS and STING (stimulator of interferon genes) knockout mice, we explored the role of cGAS in ß-cell function. This involved ß-cell-specific cGAS knockout (cGASßKO) mice, created by breeding cGAS floxed mice with transgenic mice expressing Cre recombinase under the insulin II promoter. We analyzed cGAS expression in diabetic mouse models, evaluated the effects of cGAS deficiency on glucose tolerance, and investigated the molecular mechanisms underlying these effects through RNA sequencing. RESULTS: cGAS expression is upregulated in the islets of diabetic mice and by high glucose treatment in MIN6 cells. Both global cGAS deficiency and ß-cell-specific cGAS knockout mice lead to improved glucose tolerance by promoting ß-cell mass. Interestingly, STING knockout did not affect pancreatic ß-cell mass, suggesting a STING-independent mechanism for cGAS's role in ß-cells. Further analyses revealed that cGAS- but not STING-deficiency leads to reduced expression of CEBPß, a known suppressor of ß-cell proliferation, concurrently with increased ß-cell proliferation. Moreover, overexpression of CEBPß reverses the upregulation of Cyclin D1 and D2 induced by cGAS deficiency, thereby regulating ß-cell proliferation. These results confirm that cGAS regulation of ß-cell proliferation via a CEBPß-dependent but STING-independent mechanism. CONCLUSIONS/INTERPRETATION: Our findings highlight the pivotal role of cGAS in promoting ß-cell proliferation and maintaining glucose homeostasis, potentially by regulating CEBPß expression in a STING-independent manner. This study uncovers the significance of cGAS in controlling ß-cell mass and identifies a potential therapeutic target for enhancing ß-cell proliferation in the treatment of diabetes.

10.
Small ; : e2401457, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733086

ABSTRACT

The separator is an important component in batteries, with the primary function of separating the positive and negative electrodes and allowing the free passage of ions. Porous organic framework materials have a stable connection structure, large specific surface area, and ordered pores, which are natural places to store electrolytes. And these materials with specific functions can be designed according to the needs of researchers. The performance of porous organic framework-based separators used in rechargeable lithium metal batteries is much better than that of polyethylene/propylene separators. In this paper, the three most classic organic framework materials (MOF, COF, and HOF) are analyzed and summarized. The applications of MOF, COF, and HOF separators in lithium-sulfur batteries, lithium metal anode, and solid electrolytes are reviewed. Meanwhile, the research progress of these three materials in different fields is discussed based on time. Finally, in the conclusion, the problems encountered by MOF, COF, and HOF in different fields as well as their future research priorities are presented. This review will provide theoretical guidance for the design of porous framework materials with specific functions and further stimulate researchers to conduct research on porous framework materials.

11.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730334

ABSTRACT

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Subject(s)
Actins , Meiosis , Oocytes , cdc42 GTP-Binding Protein , Animals , Oocytes/metabolism , Mice , Female , Actins/metabolism , Actins/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Phosphorylation , Spindle Apparatus/metabolism
12.
Int J Biol Macromol ; 269(Pt 2): 131959, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692548

ABSTRACT

Polyphenol-protein complexes delivery systems are gaining attention for their potential health benefits and food industry development. However, creating an ideal delivery system requires extensive wet-lab experimentation. To address this, we collected 525 ligand-protein interaction data pairs and established an interaction prediction model using Bilinear Attention Networks. We utilized 10-fold cross validation to address potential overfitting issues in the model, resulting in showed higher average AUROC (0.8443), AUPRC (0.7872), and F1 (0.8164). The optimal threshold (0.3739) was selected for the model to be used for subsequent analysis. Based on the model prediction results and optimal threshold, by verifying experimental analysis, the interaction of paeonol with the following proteins was obtained, including bovine serum albumin (lgKa = 6.2759), bovine ß-lactoglobulin (lgKa = 6.7479), egg ovalbumin (lgKa = 5.1806), zein (lgKa = 6.0122), bovine α-lactalbumin (lgKa = 3.9170), bovine lactoferrin (lgKa = 4.5380), the first four proteins are consistent with the predicted results of the model, with lgKa >5. The established model can accurately and rapidly predict the interaction of polyphenol-protein complexes. This study is the first to combine open ligand-protein interaction experiments with Deep Learning algorithms in the food industry, greatly improving research efficiency and providing a novel perspective for future complex delivery system construction.

13.
Invest Ophthalmol Vis Sci ; 65(5): 7, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700875

ABSTRACT

Purpose: This study aimed to explore the underlying mechanisms of the observed visuomotor deficit in amblyopia. Methods: Twenty-four amblyopic (25.8 ± 3.8 years; 15 males) and 22 normal participants (25.8 ± 2.1 years; 8 males) took part in the study. The participants were instructed to continuously track a randomly moving Gaussian target on a computer screen using a mouse. In experiment 1, the participants performed the tracking task at six different target sizes. In experiments 2 and 3, they were asked to track a target with the contrast adjusted to individual's threshold. The tracking performance was represented by the kernel function calculated as the cross-correlation between the target and mouse displacements. The peak, latency, and width of the kernel were extracted and compared between the two groups. Results: In experiment 1, target size had a significant effect on the kernel peak (F(1.649, 46.170) = 200.958, P = 4.420 × 10-22). At the smallest target size, the peak in the amblyopic group was significantly lower than that in the normal group (0.089 ± 0.023 vs. 0.107 ± 0.020, t(28) = -2.390, P = 0.024) and correlated with the contrast sensitivity function (r = 0.739, P = 0.002) in the amblyopic eyes. In experiments 2 and 3, with equally visible stimuli, there were still differences in the kernel between the two groups (all Ps < 0.05). Conclusions: When stimulus visibility was compensated, amblyopic participants still showed significantly poorer tracking performance.


Subject(s)
Amblyopia , Visual Acuity , Humans , Amblyopia/physiopathology , Male , Female , Adult , Young Adult , Visual Acuity/physiology , Psychophysics/methods , Motion Perception/physiology , Contrast Sensitivity/physiology , Eye Movements/physiology
14.
Magn Reson Imaging ; 111: 120-130, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703971

ABSTRACT

OBJECTIVE: To construct a user-friendly nomogram with MRI and clinicopathological parameters for the prediction of pathological complete response (pCR) after neoadjuvant therapy (NAT) in patients with breast cancer (BC). METHODS: We retrospectively enrolled consecutive female patients pathologically confirmed with breast cancer who received NAT followed by surgery between January 2018 and December 2022 as the development cohort. Additionally, we prospectively collected eligible candidates between January 2023 and December 2023 as an external validation group at our institution. Pretreatment MRI features and clinicopathological variables were collected, and the pre- and post-treatment background parenchymal enhancement (BPE) and the changes in BPE on two MRIs were compared between patients who achieved pCR and those who did not. Multivariable logistic regression analysis was used to identify independent variables associated with pCR in the development cohort. These independent variables were combined into a predictive nomogram for which performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration plot, decision curve analysis, and external validation. RESULTS: In the development cohort, there were a total of 276 female patients with a mean age of 48.3 ± 8.7 years, while in the validation cohort, there were 87 female patients with a mean age of 49.0 ± 9.5 years. Independent prognostic factors of pCR included small tumor size, HER2(+), high Ki-67 index,high signal enhancement ratio (SER), low minimum value of apparent diffusion coefficient (ADCmin), and significantly decreased BPE after NAT(change of BPE). The nomogram, which incorporates the above parameters, demonstrated excellent predictive performance in both the development and external validation cohorts, with AUC values of 0.900 and 0.850, respectively. Additionally, the nomogram showed excellent calibration capacities, as indicated by Hosmer-Lemeshow test p values of 0.508 and 0.423 in the two cohorts. Furthermore, the nomogram provided greater net benefits compared to the default simple schemes in both cohorts. CONCLUSION: A nomogram constructed using tumor size, HER2 status, Ki-67 index, SER, ADCmin, and changes in pre- and post-NAT BPE demonstrated strong predictive performance, calibration ability, and greater net benefits for predicting pCR in patients with BC after NAT. This suggests that the user-friendly nomogram could be a valuable imaging biomarker for identifying suitable candidates for NAT.

15.
Zool Res ; 45(3): 691-703, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766750

ABSTRACT

General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.


Subject(s)
Anesthetics, General , Brain , Oligodendroglia , Oligodendroglia/drug effects , Animals , Brain/drug effects , Anesthetics, General/adverse effects , Anesthetics, General/toxicity , Neurotoxicity Syndromes/etiology , Humans
16.
Environ Technol ; : 1-13, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773903

ABSTRACT

The increasing concentrations of heavy metals in livestock wastewater pose a serious threat to the environmental safety and human health, limiting its resource utilisation. In the present study, microalgae and nanoscale zero-valent iron were selected to construct a coupled system for copper-containing wastewater treatment. The addition of 50 mg·L-1 nanoscale zero-valent iron (50 nm) was the optimal value for the experiment, which could significantly increase the biomass of microalgae. In addition, nanoscale zero-valent iron stimulated microalgal secretion of extracellular polymeric substances, increasing the contents of binding sites, organic ligands, and functional groups on the microalgal surfaces and ultimately promoting the settling of microalgae and binding of heavy metals. The coupled system could quickly adapt to copper-containing wastewater of 10 mg·L-1, and the copper removal rate reached 94.99%. Adsorption and uptake by organisms, together with the contribution of zero-valent iron nanoparticles, are the major copper removal pathways. Overall, this work offers a novel technical solution for enhanced treatment of copper-containing livestock wastewater, which will help improve the efficiency and quality of wastewater treatment.

17.
Zool Res ; 45(3): 551-566, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38757223

ABSTRACT

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Proto-Oncogene Proteins p21(ras) , Animals , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Carcinoma, Hepatocellular/pathology , Mice , Liver Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Disease Models, Animal , Mice, Transgenic , Mice, Inbred C57BL , Humans
18.
BMC Pulm Med ; 24(1): 235, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745167

ABSTRACT

BACKGROUND: Emerging evidences have demonstrated that gut microbiota composition is associated with pulmonary arterial hypertension (PAH). However, the underlying causality between intestinal dysbiosis and PAH remains unresolved. METHOD: An analysis using the two-sample Mendelian randomization (MR) approach was conducted to examine the potential causal relationship between gut microbiota and PAH. To assess exposure data, genetic variants associated with 196 bacterial traits were extracted from the MiBioGen consortium, which included a sample size of 18,340 individuals. As for the outcomes, summary statistics for PAH were obtained from the NHGRI-EBI GWAS Catalog, which conducted a meta-analysis of four independent studies comprising a total of 11,744 samples. Causal effects were estimated employing various methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weight mode and simple mode, with sensitivity analyses also being implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots. RESULTS: Following false discovery rate (FDR) correction, the genetically predicted genus Eubacterium fissicatena group (odds ratio (OR) 1.471, 95% confidence interval (CI) 1.178-1.837, q = 0.076) exhibited a causal association with PAH. In addition, the genus LachnospiraceaeUCG004 (OR 1.511, 95% CI 1.048-2.177) and genus RuminococcaceaeUCG002 (OR 1.407, 95% CI 1.040-1.905) showed a suggestive increased risk of PAH, while genus Eubacterium eligens group (OR 0.563, 95% CI 0.344-0.922), genus Phascolarctobacterium (OR 0.692, 95% CI 0.487-0.982), genus Erysipelatoclostridium (OR 0.757, 95% CI 0.579-0.989) and genus T-yzzerella3 (OR 0.768, 95% CI 0.624-0.945) were found to have nominal protective effect against PAH. CONCLUSION: The findings from our MR study have revealed a potential causal relationship between gut microbiota and PAH. Specifically, we have identified four types of gut microbiota that exhibit a protective effect on PAH, as well as three types that have a detrimental impact on PAH, thereby offering valuable insights for future mechanistic and clinical investigations in the field of PAH.


Subject(s)
Gastrointestinal Microbiome , Mendelian Randomization Analysis , Humans , Gastrointestinal Microbiome/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/microbiology , Genome-Wide Association Study , Dysbiosis/genetics , Polymorphism, Single Nucleotide
19.
Pharmacol Res ; 204: 107206, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729588

ABSTRACT

Chemoresistance is a major therapeutic challenge in advanced gastric cancer (GC). N6-methyladenosine (m6A) RNA modification has been shown to play fundamental roles in cancer progression. However, the underlying mechanisms by which m6A modification of circRNAs contributes to GC and chemoresistance remain unknown. We found that hsa_circ_0030632 (circUGGT2) was a predominant m6A target of METTL14, and METTL14 knockdown (KD) reduced circUGGT2 m6A levels but increased its mRNA levels. The expression of circUGGT2 was markedly increased in cisplatin (DDP)-resistant GC cells. CircUGGT2 KD impaired cell growth, metastasis and DDP-resistance in vitro and in vivo, but circUGGT2 overexpression prompted these effects. Furthermore, circUGGT2 was validated to sponge miR-186-3p and upregulate MAP3K9 and could abolish METTL14-caused miR-186-3p upregulation and MAP3K9 downregulation in GC cells. circUGGT2 negatively correlated with miR-186-3p expression and harbored a poor prognosis in patients with GC. Our findings unveil that METTL14-dependent m6A modification of circUGGT2 inhibits GC progression and DDP resistance by regulating miR-186-3p/MAP3K9 axis.

20.
BMJ Open ; 14(5): e078126, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740506

ABSTRACT

OBJECTIVE: To examine the current prevalence and cost of paediatric off-label drug prescriptions in Gansu, China, and the potential influencing factors. DESIGN: The prevalence of off-label prescriptions in paediatrics was evaluated according to the National Medical Products Administration drug instructions in the China Pharmaceutical Reference (China Pharmaceutical Reference, MCDEX) database. The evidence of the prescription was determined by existing clinical practice guidelines and the Thomson Grade in the Micromedex 2021 compendium. We used logistic regression to investigate the characteristics that influence paediatric off-label drug use after single-factor regression analysis. SETTING: A multicentre cross-sectional study of outpatient paediatric prescriptions in 196 secondary and tertiary hospitals in Gansu Province, China, in March and September 2020. RESULTS: We retrieved 104 029 paediatric prescriptions, of which 39 480 (38.0%) contained off-label use. The most common diseases treated by off-label drugs were respiratory system diseases (n=15 831, 40.1%). A quarter of off-label prescriptions had adequate evidence basis (n=10 130, 25.6%). Unapproved indications were the most common type of off-label drug use (n=25 891, 65.6%). A total of 1177 different drugs were prescribed off-label, with multienzyme tablets being the most common drug (n=1790, 3.5%). The total cost of the prescribed off-label drugs was ¥106 116/day. Off-label prescriptions were less frequent in tertiary than in secondary hospitals. Topical preparations were more commonly prescribed off-label than other types of drugs. Senior-level clinicians prescribed drugs off-label more often than intermediate and junior clinicians. CONCLUSION: Off-label drug use is widespread in paediatric practice in China. Three-quarters of the prescriptions may potentially include inappropriate medication use, resulting in a daily economic burden of about ¥81 000 in 2020 in Gansu Province with 25 million inhabitants. The management of off-label drug use in paediatrics in China needs improvement.


Subject(s)
Off-Label Use , Off-Label Use/statistics & numerical data , Humans , Cross-Sectional Studies , China , Child , Child, Preschool , Infant , Male , Female , Practice Patterns, Physicians'/statistics & numerical data , Adolescent , Infant, Newborn , Drug Prescriptions/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...