Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Polymers (Basel) ; 14(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35893961

ABSTRACT

This work presents the development of highly efficient photothermal thin films (PTFs) and the demonstration of their application on miniaturized polymer-based soft actuators. The proposed PTF, which comprises acrylic-based black paint and EGaIn liquid metal (LM) microdroplets, serves as an excellent absorber for efficiently converting near-infrared (NIR) irradiation into heat for actuating liquid-crystal elastomer (LCE) actuators. The introduction of LM microdroplets into the PTFs effectively increases the overall thermal efficiency of PTFs. Miniaturized soft crawlers monolithically integrated with the NIR-driven LCE actuators are also implemented for demonstrating the application of the proposed PTF. The crawler's locomotion, which is inspired by the rectilinear movement of snakes, is generated with the proposed PTF for inducing the LC-to-isotropic phase transition of the LCEs. The experimental results show that introducing LM microdroplets into the PTF can effectively reduce the thermal time constants of LCE actuators by 70%. Under periodic on/off NIR illumination cycles, the locomotion of crawlers with different dimensions is also demonstrated. The measurement results indicate that the proposed PTF is not only essential for enabling photothermal LCE actuation but also quite efficient and durable for repeated operation.

2.
Polymers (Basel) ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36616531

ABSTRACT

This work reports on an innovative dewetting process of silver thin films to realize percolative nanoparticle arrays (NPAs) and demonstrates its application on highly sensitive pressure sensors. The dewetting process, which is a simple and promising technique, synthesizes NPAs by breaking the as-deposited metal film into randomly distributed islands. The NPA properties, such as the mean particle size and the spacing between adjacent particles, can be easily tailored by controlling the dewetting temperature, as well as the as-deposited metal-film thickness. The fabricated NPAs were employed to develop gauge pressure sensors with high sensitivity. The proposed sensor consists of a sealed reference-pressure cavity, a polyimide (PI) membrane patterned with an interdigital electrode pair (IEP), and a silver NPA deposited on the IEP and the PI membrane. The operational principle of the device is based on the NPA percolation effect with deformation-dependence. The fabricated sensors exhibit rapid responses and excellent linearity at around 1 atm. The maximum sensitivity is about 0.1 kPa-1. The advantages of the proposed devices include ultrahigh sensitivity, a reduced thermal disturbance, and a decreased power consumption. A practical application of this pressure sensor with high resolution was demonstrated by using it to measure the relative floor height of a building.

3.
Sensors (Basel) ; 19(4)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791363

ABSTRACT

This work describes the development of a pressure-sensing array for noninvasive continuous blood pulse-wave monitoring. The sensing elements comprise a conductive polymer film and interdigital electrodes patterned on a flexible Parylene C substrate. The polymer film was patterned with microdome structures to enhance the acuteness of pressure sensing. The proposed device uses three pressure-sensing elements in a linear array, which greatly facilitates the blood pulse-wave measurement. The device exhibits high sensitivity (-0.533 kPa-1) and a fast dynamic response. Furthermore, various machine-learning algorithms, including random forest regression (RFR), gradient-boosting regression (GBR), and adaptive boosting regression (ABR), were employed for estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) from the measured pulse-wave signals. Among these algorithms, the RFR-based method gave the best performance, with the coefficients of determination for the reference and estimated blood pressures being R² = 0.871 for SBP and R² = 0.794 for DBP, respectively.


Subject(s)
Blood Pressure Determination/trends , Blood Pressure/physiology , Machine Learning , Pulse Wave Analysis/methods , Algorithms , Diagnosis, Computer-Assisted , Heart Rate/physiology , Humans
4.
Micromachines (Basel) ; 9(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-30424175

ABSTRACT

In this work, a flexible micro-supercapacitor with interdigital planar buckypaper electrodes is presented. A simple fabrication process involving vacuum filtration method and SU-8 molding techniques is proposed to fabricate in-plane interdigital buckypaper electrodes on a membrane filter substrate. The proposed process exhibits excellent flexibility for future integration of the micro-supercapacitors (micro-SC) with other electronic components. The device's maximum specific capacitance measured using cyclic voltammetry was 107.27 mF/cm² at a scan rate of 20 mV/s. The electrochemical stability was investigated by measuring the performance of charge-discharge at different discharge rates. Devices with different buckypaper electrode thicknesses were also fabricated and measured. The specific capacitance of the proposed device increased linearly with the buckypaper electrode thickness. The measured leakage current was approximately 9.95 µA after 3600 s. The device exhibited high cycle stability, with 96.59% specific capacitance retention after 1000 cycles. A Nyquist plot of the micro-SC was also obtained by measuring the impedances with frequencies from 1 Hz to 50 kHz; it indicated that the equivalent series resistance value was approximately 18 Ω.

5.
Micromachines (Basel) ; 9(7)2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30424285

ABSTRACT

Obstructive sleep apnea (OSA), which is caused by obstructions of the upper airway, is a syndrome with rising prevalence. Mandibular advancement splints (MAS) are oral appliances for potential treatment of OSA. This work proposes a highly-sensitive pressure sensing array integrated with a system-on-chip (SoC) embedded in a MAS. The device aims to measure tongue pressure distribution in order to determine the efficacy of the MAS for treating OSA. The flexible sensing array consists of an interdigital electrode pair array assembled with conductive polymer films and an SoC capable of retrieving/storing data during sleep, and transmitting data for analysis after sleep monitoring. The surfaces of the conductive polymer films were patterned with microdomed structures, which effectively increased the sensitivity and reduced the pressure sensing response time. The measured results also show that the crosstalk effect between the sensing elements of the array was negligible. The sensitivity of the sensing array changed minimally after the device was submerged in water for up to 100 h.

6.
Sensors (Basel) ; 17(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035296

ABSTRACT

Sleep apnea is a serious sleep disorder, and the most common type is obstructive sleep apnea (OSA). Untreated OSA will cause lots of potential health problems. Oral appliance therapy is an effective and popular approach for OSA treatment, but making a perfect fit for each patient is time-consuming and decreases its efficiency considerably. This paper proposes a System-on-a-Chip (SoC) enabled sleep monitoring system in a smart oral appliance, which is capable of intelligently collecting the physiological data about tongue movement through the whole therapy. A tunneling sensor array with an ultra-high sensitivity is incorporated to accurately detect the subtle pressure from the tongue. When the device is placed on the wireless platform, the temporary stored data will be retrieved and wirelessly transmitted to personal computers and cloud storages. The battery will be recharged by harvesting external RF power from the platform. A compact prototype module, whose size is 4.5 × 2.5 × 0.9 cm³, is implemented and embedded inside the oral appliance to demonstrate the tongue movement detection in continuous time frames. The functions of this design are verified by the presented measurement results. This design aims to increase efficiency and make it a total solution for OSA treatment.


Subject(s)
Biosensing Techniques/instrumentation , Polysomnography/instrumentation , Sleep Apnea, Obstructive/therapy , Wireless Technology , Humans , Sleep Apnea, Obstructive/diagnosis
7.
Sensors (Basel) ; 15(9): 21567-80, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26343682

ABSTRACT

We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

8.
IEEE Trans Biomed Circuits Syst ; 9(6): 790-800, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26800550

ABSTRACT

A micro-controller unit (MCU) assisted immunoassay lab-on-a-chip is realized in 0.35 µm CMOS technology. The MCU automatically controls the detection procedure including blood filtration through a nonporous aluminum oxide membrane, bimolecular conjugation with antibodies attached to magnetic beads, electrolytic pumping, magnetic flushing and threshold detection based on Hall sensor array readout analysis. To verify the function of this chip, in-vitro Tumor necrosis factor- α (TNF-α) and N-terminal pro-brain natriuretic peptide (NT-proBNP) tests are performed by this 9 mm(2)-sized single chip. The cost, efficiency and portability are considerably improved compared to the prior art.


Subject(s)
Blood Chemical Analysis/instrumentation , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Tumor Necrosis Factor-alpha/blood , Humans , Immunoassay , Lab-On-A-Chip Devices/economics , Point-of-Care Systems
9.
Sensors (Basel) ; 14(7): 12370-86, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25014098

ABSTRACT

This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated.


Subject(s)
Electrocardiography/instrumentation , Electrodes , Electroencephalography/instrumentation , Electric Conductivity , Electric Impedance , Humans , Silicon/chemistry , Skin/chemistry
10.
Sensors (Basel) ; 10(4): 3597-610, 2010.
Article in English | MEDLINE | ID: mdl-22319314

ABSTRACT

This paper presents a novel method to fabricate temperature sensor arrays by dispensing a graphite-polydimethylsiloxane composite on flexible polyimide films. The fabricated temperature sensor array has 64 sensing cells in a 4×4 cm2 area. The sensor array can be used as humanoid artificial skin for sensation system of robots. Interdigitated copper electrodes were patterned on the flexible polyimide substrate for determining the resistivity change of the composites subjected to ambient temperature variations. Polydimethylsiloxane was used as the matrix. Composites of different graphite volume fractions for large dynamic range from 30 °C to 110 °C have been investigated. Our experiments showed that graphite powder provided the composite high temperature sensitivity. The fabricated temperature sensor array has been tested. The detected temperature contours are in good agreement with the shapes and magnitudes of different heat sources.

11.
Sensors (Basel) ; 10(11): 10211-25, 2010.
Article in English | MEDLINE | ID: mdl-22163466

ABSTRACT

In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB) technologies. The sensing array consists of a polydimethlysiloxane (PDMS) structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array.


Subject(s)
Electric Capacitance , Electronics/instrumentation , Polymers/chemistry , Shear Strength , Equipment Design
12.
Opt Express ; 17(22): 19919-25, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997215

ABSTRACT

This work presents the development of a novel micromachined 2x2 optical switch monolithically integrated with variable optical attenuators. The proposed device can be easily realized by a standard manufacturing process with single photo mask. The key to realizing this device by such a simple approach is the employment the split-cross-bar (SCB) configuration. With this configuration, the fabrication challenges and layout constraints for accommodating all the sub-components of this dual-function device can be completely eliminated. The monolithically-integrated system has four movable mirrors, two bi-stable mechanisms and six actuators. The switching of optical signals is achieved by moving the mirrors attached on the bi-stable mechanisms using four of the actuators. The attenuation of optical power is carried out by moving the mirrors using the other two actuators and the bi-stable mechanisms. Also, only simple in-plane motions are needed for these sub-components to achieve all the functionalities. In addition, the adaption of bi-stable mechanisms can reduce the power consumption and simplify the actuation scheme. The measured insertion losses for both channels are about 1.0~1.1 dB, and the cross-talk is less than -60 dB. The attenuation range is about 30 dB for a maximum applied voltage of 20 V. Also, the measured switching time is less than 4 ms.


Subject(s)
Lenses , Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL