Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24998-25013, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882067

ABSTRACT

The focus of exploration geochemistry is an accurate interpretation of geochemical data and the precise extraction of anomaly information related to mineralization from complex geological information. However, geochemical data are component data and exhibit a closure effect. Thus, traditional statistical methods cannot adequately reveal and identify the distribution of deep-seated anomaly information. This paper focuses on the Sidaowanzi area in Inner Mongolia and uses multivariate component data analysis methods to process 1:50 000 soil geochemical data. Using the Exploratory Data Analysis (EDA) method, the spatial distribution and internal structure characteristics of raw, logarithmic, and isometric logarithmic ratio (ILR) transformed data were compared and, coupled with robust principal component analysis (RPCA) and elemental component biplots, the association between element combinations and mineralization indicated by these three types of data was revealed. The S-A method was used to decompose composite anomalies of the ILR transformed RPCA score data to extract the characteristics of elemental combination anomalies and background distribution, and the Fry analysis method was utilized to analyze the dominant mineralization direction within the area. The results show that (1) data transformed using the ILR eliminated the influence of the closure effect, making the data more uniform on a spatial scale and exhibiting characteristics of an approximately normal distribution. (2) The S-A method was further used to decompose the composite anomaly of the PC1 and PC2 principal component combinations. The screened-out anomaly and background fields can essentially reflect the ore-causing anomalies dominated by Au and Cu-Mo mineralization. Moreover, the extracted anomalies and background information closely align with known mineral deposits (prospects) and can effectively identify weakly retarded geochemical anomaly information. (3) Fry analysis based on geochemical anomalies indicates that the dominant mineralization directions, by an assemblage dominated by Au and Cu-Mo, predominantly occur in the NE, NW, and proximate EW orientations. The combined application of the aforementioned three methods for the quantitative analysis of geochemical data aims to explore a transferable methodological system, providing new insights and approaches for further prediction of mineralization potential.

2.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686923

ABSTRACT

Nanocomposites that combine porous materials and a continuous conductive skeleton as a sulfur host can improve the performance of lithium-sulfur (Li-S) batteries. Herein, carbon nanotubes (CNTs) anchoring small-size (~40 nm) N-doped porous carbon polyhedrons (S-NCPs/CNTs) are designed and synthesized via annealing the precursor of zeolitic imidazolate framework-8 grown in situ on CNTs (ZIF-8/CNTs). In the nanocomposite, the S-NCPs serve as an efficient host for immobilizing polysulfides through physical adsorption and chemical bonding, while the interleaved CNT networks offer an efficient charge transport environment. Moreover, the S-NCP/CNT composite with great features of a large specific surface area, high pore volume, and short electronic/ion diffusion depth not only demonstrates a high trapping capacity for soluble lithium polysulfides but also offers an efficient charge/mass transport environment, and an effective buffering of volume changes during charge and discharge. As a result, the Li-S batteries based on a S/S-NCP/CNT cathode deliver a high initial capacity of 1213.8 mAh g-1 at a current rate of 0.2 C and a substantial capacity of 1114.2 mAh g-1 after 100 cycles, corresponding to a high-capacity retention of 91.7%. This approach provides a practical research direction for the design of MOF-derived carbon materials in the application of high-performance Li-S batteries.

3.
Materials (Basel) ; 15(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36079196

ABSTRACT

Plant urease has the advantages of high activity and small size in enzyme-induced calcium carbonate precipitation (EICP). However, there area lack of nucleation sites for calcium carbonate in EICP. Sucrose and sorbitol, which are readily available and inexpensive, have the potential to provide nucleation sites for EICP as nucleating agents. To explore the effects of the two nucleating agents on EICP, the productivity of calcium carbonate, unconfined compressive strength (UCS) and microscopic mechanisms were tested. It is found that the productivity of EICP can be increased as much as 5.1% by the addition of sorbitol with an optimal content of 5%, and the productivity of EICP can be increased as much as 12.3% by the addition of sucrose with an optimal of 4%. The UCS of EICP-treated sand increases by 2.2 times after being improved by sorbitol with a content of 5.2%, the CaCO3 content of EICP-treated sand with sorbitol added increased by 1.5% compared to conventional EICP-treated sand. These results show that the two nucleating agents are effective for improving EICP. The SEM images verify that sorbitol/sucrose can compensate for the lack of nucleating sites in EICP and explicate the effect of nucleating agents on EICP.

SELECTION OF CITATIONS
SEARCH DETAIL
...