Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Semin Arthritis Rheum ; 66: 152445, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579592

ABSTRACT

BACKGROUND: Limited research has been conducted on the association between long-term exposure to air pollutants and the incidence of gout. OBJECTIVES: This study aims to assess the individual and combined effects of prolonged exposure to five air pollutants (NO2, NOx, PM10, PMcoarse and PM2.52) on the incidence of gout among 458,884 initially gout-free participants enrolled in the UK Biobank. METHODS: Employing a land use regression model, we utilized an estimation method to ascertain the annual concentrations of the five air pollutants. Subsequently, we devised a weighted air pollution score to facilitate a comprehensive evaluation of exposure. The Cox proportional hazards model was utilized to investigate the association between ambient air pollution and gout risk. Interaction and stratification analyses were conducted to evaluate age, sex, BMI, and genetic predisposition as potential effect modifiers in the air pollution-gout relationship. Furthermore, mediation analyses were conducted to explore the potential involvement of biomarkers in mediating the association between air pollution and gout. RESULTS: Over a median follow-up time of 12.0 years, 7,927 cases of gout were diagnosed. Significant associations were observed between the risk of gout and a per IQR increase in NO2 (HR3: 1.05, 95 % CI4: 1.02-1.08, p = 0.003), NOx (HR: 1.04, 95 % CI: 1.01-1.06, p = 0.003), and PM2.5 (HR: 1.03, 95 % CI: 1.00-1.06, p = 0.030). Per IQR increase in the air pollution score was associated with an elevated risk of gout (p = 0.005). Stratified analysis revealed a significant correlation between the air pollution score and gout risk in participants ≥60 years (HR: 1.05, 95 % CI: 1.02-1.09, p = 0.005), but not in those <60 years (p = 0.793), indicating a significant interaction effect with age (p-interaction=0.009). Mediation analyses identified five serum biomarkers (SUA:15.87 %, VITD: 5.04 %, LDLD: 3.34 %, GGT: 1.90 %, AST: 1.56 %5) with potential mediation effects on this association. CONCLUSIONS: Long-term exposure to air pollutants, particularly among the elderly population, is associated with an increased risk of gout. The underlying mechanisms of these associations may involve the participation of five serum biomarkers.


Subject(s)
Air Pollutants , Air Pollution , Gout , Humans , Gout/epidemiology , Gout/genetics , Male , Female , Middle Aged , United Kingdom/epidemiology , Prospective Studies , Incidence , Air Pollutants/adverse effects , Aged , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Genetic Predisposition to Disease , Adult , Biological Specimen Banks , Risk Factors , Particulate Matter/adverse effects , UK Biobank
2.
iScience ; 27(2): 108885, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38313051

ABSTRACT

Resistance to cisplatin (cis-dichlorodiamineplatinum, DDP) in ovarian cancer is a significant clinical challenge. Epigallocatechin-3-gallate (EGCG) has shown promise in cancer therapy. However, its effects on DDP-resistant ovarian cancer remain understudied. This study aims to assess the impact of EGCG on DDP-resistant cells and elucidate the associated molecular mechanisms. DDP-resistant cell lines were utilized for biological characterization. EGCG effectively inhibited proliferation, mobility, and induced apoptosis in OC/DDP cells. It downregulated the expression of S100A4 and NF-κB while upregulating p53 expression. These effects were reversed upon overexpression of S100A4 or NF-κB. In vivo experiments confirmed tumor inhibition and KI67 inhibition by EGCG. Moreover, EGCG downregulated the expression of S100A4 and NF-κB while upregulating p53 in xenograft mice compared to those without EGCG treatment. This study suggests that EGCG suppresses cancer progression through the S100A4/NF-κB signaling pathway, involving interaction with p53. EGCG holds potential as an anticancer candidate for OC/DDP.

3.
Environ Res ; 247: 118182, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38218525

ABSTRACT

A comprehensive overview of the associations between air pollution and the risk of gastrointestinal (GI) diseases has been lacking. We aimed to examine the relationships of long-term exposure to ambient particulate matter (PM) with aerodynamic diameter ≤2.5 µm (PM2.5), 2.5-10 µm (PMcoarse), ≤10 µm (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), with the risk of incident GI diseases, and to explore the interplay between air pollution and genetic susceptibility. A total of 465,703 participants free of GI diseases in the UK Biobank were included at baseline. Land use regression models were employed to calculate the residential air pollutants concentrations. Cox proportional hazard models were used to evaluate the associations of air pollutants with the risk of GI diseases. The dose-response relationships of air pollutants with the risk of GI diseases were evaluated by restricted cubic spline curves. We found that long-term exposure to ambient air pollutants was positively associated with the risk of peptic ulcer (PM2.5 : Q4 vs. Q1: hazard ratio (HR) 1.272, 95% confidence interval (CI) 1.179-1.372, NO2: 1.220, 1.131-1.316, and NOx: 1.277, 1.184-1.376) and chronic gastritis (PM2.5: 1.454, 1.309-1.616, PM10 : 1.232, 1.112-1.366, NO2: 1.456, 1.311-1.617, and NOx: 1.419, 1.280-1.574) after Bonferroni correction. Participants with high genetic risk and high air pollution exposure had the highest risk of peptic ulcer, compared to those with low genetic risk and low air pollution exposure (PM2.5: HR 1.558, 95%CI 1.384-1.754, NO2: 1.762, 1.395-2.227, and NOx: 1.575, 1.403-1.769). However, no significant additive or multiplicative interaction between air pollution and genetic risk was found. In conclusion, long-term exposure to ambient air pollutants was associated with increased risk of peptic ulcer and chronic gastritis.


Subject(s)
Air Pollutants , Air Pollution , Gastritis , Peptic Ulcer , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , Prospective Studies , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Peptic Ulcer/chemically induced , Genetic Predisposition to Disease , Gastritis/chemically induced , Environmental Exposure/adverse effects , Environmental Exposure/analysis
4.
Front Immunol ; 14: 1274431, 2023.
Article in English | MEDLINE | ID: mdl-38022654

ABSTRACT

Background: Immunotherapy is significantly revolutionizing cancer treatment and demonstrating promising efficacy in gastric cancer (GC) patients. However, only a subset of patients could derive benefits from targeted monoclonal antibody therapy against programmed death receptor 1 (PD-1). This study aims to identify suitable serum cytokines and blood cell ratios as predictive biomarkers to aid in the selection of GC patients likely to benefit from PD-1 inhibitors. Materials and methods: This retrospective study included 41 GC patients who received PD-1 inhibitors combined with chemotherapy, 36 GC patients treated solely with chemotherapy, and 33 healthy controls. The study assessed the levels of seven cytokines: interleukin-2 (IL-2), IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and various inflammatory markers, including the neutrophil-to-lymphocyte ratio (NLR), total lymphocyte count (TLC), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR). Measurements were obtained using the inpatient system. Univariate and multivariate Cox regression analyses were performed to evaluate the predictive significance of these hematologic parameters for clinical outcomes. Results: Levels of IL-6, IL-10, TNF-α, NLR, and PLR were significantly elevated in GC patients compared to healthy controls, while TLC and LMR were higher in the control group. Among the 41 patients receiving PD-1 inhibitors and chemotherapy, baseline IL-2 was associated with OS and PFS. Additionally, IL-6 and IL-17A correlated with OS, while NLR was linked to PFS (all P<0.05). These factors were identified as independent prognostic indicators in both univariate and multivariate analyses. Furthermore, almost all cytokine levels increased following the initiation of PD-1 inhibitor treatment. Conclusions: The introduction of PD-1 inhibitors alongside chemotherapy in GC impacts serum cytokine levels. IL-2, IL-6, IL-17A, and NLR exhibit potential as reliable circulating predictive biomarkers for identifying patients who may benefit from PD-1 inhibitors combined with chemotherapy.


Subject(s)
Neutrophils , Stomach Neoplasms , Humans , Neutrophils/pathology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-10 , Interleukin-2/therapeutic use , Interleukin-17 , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Retrospective Studies , Cytokines/therapeutic use , Tumor Necrosis Factor-alpha/therapeutic use , Interleukin-6 , Lymphocytes/pathology , Biomarkers
5.
Opt Express ; 30(25): 44850-44863, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522899

ABSTRACT

Based on partial coherence theory, this study rigorously deduces the principle of spatial light interference microscopy (SLIM) and improves the calculation method of SLIM. The main problem we found with SLIM is that it simply defaults the phase of the direct light to 0. To address this problem, we propose and experimentally demonstrate a double four-step phase shift method. Simulation results show that this method can reduce the relative error of oil-immersed microsphere reconstruction to about 3.7%, and for red blood cell reconstruction, the relative error can be reduced to about 13%.

6.
Adv Healthc Mater ; 11(21): e2201640, 2022 11.
Article in English | MEDLINE | ID: mdl-36050894

ABSTRACT

Traditional glioblastoma (GBM) cell lines do not maintain the heterogeneity of the original tumor, cell interactions, and therapy response, thus limiting their investigation in GBM theranostics. Herein, a kind of GBM tumor-targeting nanoparticles (NPs) TCFNP@iRGD are designed and constructed, which are generated by photoacoustic (PA) contrast agent 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile (TCF)-OH through facile nanoprecipitation and decorated with an active targeting ligand iRGD. Their potential in GBM detection via PA imaging on glioma patient-derived cells intracranial xenograft models is evaluated for the first time. Excellent tumor-specific PA mapping performance of GBM is realized by TCFNP@iRGD, demonstrating its promising potential in the clinical diagnosis of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Photoacoustic Techniques , Animals , Mice , Humans , Contrast Media/therapeutic use , Xenograft Model Antitumor Assays , Mice, Nude , Brain Neoplasms/pathology , Glioblastoma/metabolism , Cell Line, Tumor
7.
Appl Biochem Biotechnol ; 194(12): 5702-5716, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35802237

ABSTRACT

Monascus species are the producers of Monascus azaphilone pigments (MonAzPs) and lipid-lowering component Monacolin K, which have been widely used as food colorant and health products. In this study, silent information regulator 2 (Sir2) homolog (MrSir2) was characterized, and its impacts on the development and MonAzPs production of Monascus ruber were evaluated. Enzyme activity test in vitro showed that MrSir2 was an NAD+-dependent histone deacetylase. Compared to WT, Δmrsir2 strain accumulated more acetylated lysine residues of histone H3 subunit during its vegetative growth phase, and it exhibited accelerated mycelial aging, more spores, increased resistance to oxidative stress, and more MonAzPs production. RNA-Seq-based transcriptome analysis revealed that MrSir2 mainly regulated the gene expression in macromolecular metabolism such as carbohydrates, proteins, and nucleotides, as well as genes encoding cell wall synthesis and cell membrane component, indicating that MrSir2 probably facilitates the metabolic transition from the primary growth phase to the mycelial aging. Taken together, MrSir2 mainly targets H3 subunit at the vegetative growth phase and affects the development of M. ruber and MonAzPs production.


Subject(s)
Monascus , Monascus/metabolism , Pigments, Biological , Benzopyrans/metabolism
9.
Nano Lett ; 22(8): 3228-3235, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35380847

ABSTRACT

Theranostic agents based on inorganic nanomaterials are still suffered from the nonbiodegradable substances with long-term retention in body and unavoidable biological toxicity, as well as nonspecificity biodistribution with potential damage toward normal tissues. Here, we develop magnetic ions (FeIII, FeII, GdIII, MnII, and MnIII) coordinated nanoplatform (MICN) with framework structure and modify them with PEG (MICN-PEG). Notably, MICN-PEG demonstrates hydroxide ions (OH-) triggered the structure collapse along with responsive near-infrared photoacoustic (PA) signal, magnetic resonance imaging (MRI), and photothermal therapy (PTT) performances. Thereby, MICN-PEG is able to remain stable in tumors and exert excellent PA/MRI and PTT effects for multimodal imaging-guided cancer treatment. In contrast, MICN-PEG is gradually collapsed in normal tissues, resulting in the significant improvement of imaging accuracy and treatment specificity. MICN-PEG is gradually cleared after administration, minimizing concerns about the long-term toxicity.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Ferric Compounds , Hydroxides , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy , Precision Medicine , Theranostic Nanomedicine/methods , Tissue Distribution
10.
Cell Cycle ; 21(8): 835-850, 2022 04.
Article in English | MEDLINE | ID: mdl-35100080

ABSTRACT

Osteosarcoma (OS) is a malignant tumor with a low survival rate and a high incidence rate worldwide. Although research has reported the involvement of long non-coding RNAs (lncRNAs) in the pathogenesis of OS cells, the role of TRPM2-AS, miR-15b-5p, and PPM1D in OS progression remains unclear. This study aimed to examine the interaction of the TRPM2-AS/miR-15b-5p/PPM1D axis in OS cells to gain new insights into the molecular mechanism and pathogenesis of OS. After performing in vitro functional assays, we discovered that TRPM2-AS was overexpressed in OS cells. TRPM2-AS silencing impaired OS cell viability, proliferation, and migration, while it induced apoptosis in OS cells in vitro. Our experimental analysis also revealed that PPM1D is a direct target of miR-15b-5p. TRPM2-AS silencing was found to reverse the tumorigenic effect of the miR-15b-5p inhibitor, while the miR-15b-5p inhibitor restored the inhibition of OS caused by silencing PPM1D. Moreover, our findings revealed that miR-15b-5p exerted its tumor-suppressive role by directly targeting PPM1D. In conclusion, this study suggests that TRPM2-AS could promote OS cell malignancy by sponging miR-15b-5p/PPM1D axis.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , TRPM Cation Channels , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Protein Phosphatase 2C , TRPM Cation Channels/genetics
11.
Front Cell Dev Biol ; 9: 663654, 2021.
Article in English | MEDLINE | ID: mdl-34178988

ABSTRACT

OBJECTIVE: To experimentally determine the involvement and mechanism of long non-coding RNA (lncRNA) HCP5 in the development of gastric cancer (GC). METHODS: Detection of HCP5, miR-186-5p, and WNT5A expression in clinical GC tissues and adjacent healthy tissues was performed, followed by Pearson correlation analysis. BGC-823 and AGS cells, with interferences of HCP5, miR-186-5p, and WNT5A, were cultured under hypoxia. MTT, colony formation assay, Caspase-3 activity assay, and transwell assay were applied for the determination of cell proliferation, viability, apoptosis, and invasion, respectively. Expressions of WNT5A and protein markers of epithelial-mesenchymal transition (EMT) in cells were detected by western blotting. And the binding of HCP5 and WNT5A to miR-186-5p was validated using dual-luciferase reporter assay. RESULTS: In GC tissues, an increase in HCP5 and WNT5A expressions and a reduction in miR-186-5p expression were found, and the negative correlation between miR-186-5p and HCP5/WNT5A was proven. Subsequently, under hypoxia, an increase in HCP5 and WNT5A expressions and a decrease in miR-186-5p expression in GC cells were confirmed. In addition, in GC cells under hypoxia, the inhibition of HCP5 suppressed cell biological activity and EMT, while the inhibition of miR-186-5p or the overexpression of WNT5A led to the opposite changes. CONCLUSION: An upregulation of WNT5A expression by HCP5 competitively binding to miR-186-5p promotes GC cell development.

12.
Onco Targets Ther ; 13: 11537-11547, 2020.
Article in English | MEDLINE | ID: mdl-33204108

ABSTRACT

BACKGROUND: This study aimed at probing into the effect of long non-coding RNA (lncRNA) C-terminal binding protein 1 antisense RNA 2 (CTBP1-AS2) on gastric cancer (GC) cell proliferation and apoptosis, and its regulatory function on miR-139-3p and MMP11. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to examine the expressions of CTBP1-AS2, miR-139-3p and MMP11 mRNA in GC cell lines and clinical specimens. Cell counting kit-8 (CCK-8) assay, flow cytometry and EdU assay were conducted to examine the effects of CTBP1-AS2 and miR-139-3p on GC cell proliferation and apoptosis. Western blot was applied for detecting the expressions of Bax, Bcl-2 and MMP11. A lung metastasis mouse model was used to evaluate metastasis of GC cells in vivo. Bioinformatics, dual-luciferase report assay, RIP and RNA pull-down assays were utilized to validate the targeted relationship between CTBP1-AS2 and miR-139-3p as well as the targeting relationship between miR-139-3p and MMP11. RESULTS: CTBP1-AS2 was highly expressed in GC, and its high expression was strongly associated with increased TNM stage, increased tumor size and low degree of differentiation of the tumor tissues. Meanwhile, CTBP1-AS2 promoted GC cell proliferation, metastasis and suppressed apoptosis, while miR-139-3p could weaken these effects. In addition, CTBP1-AS2 was identified as a molecular sponge for miR-139-3p, and MMP11 was verified as a target gene of CTBP1-AS2. CTBP1-AS2 could increase the expression of MMP11 via repressing miR-139-3p. CONCLUSION: CTBP1-AS2 promotes GC cells and inhibits apoptosis by regulating the miR-139-3p/MMP11 molecular axis.

13.
Environ Sci Pollut Res Int ; 27(36): 44995-45007, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32772291

ABSTRACT

A novel method referred to as hyperbranched rolling circle amplification (HRCA) coupled with lateral flow dipstick (LFD) (HRCA-LFD) here was developed for specific, sensitive, rapid, and simple detection of Prorocentrum minimum. HRCA-LFD relies on a padlock probe (PLP) consisting of a common ligation sequence, two terminal sequences that complement the target DNA, and a manually designed detection probe (LFD probe). The two terminal sequences of the PLP were designed against the species-specific sites of the large subunit ribosomal DNA (LSU rDNA) D1-D2 region of P. minimum. The optimum parameters for HRCA were as follows: PLP concentration of 20 pM, ligation time of 30 min, ligation temperature of 59 °C, enzymic digestion time of 105 min, amplification time of 45 min, and amplification temperature of 58 °C. The HRCA-LFD displaying high specificity could accurately distinguish P. minimum from other microalgae. The detection limit of HRCA-LFD was as low as 1.42 × 10-7 ng µL-1 for genomic DNA, 1.03 × 10-7 ng µL-1 (approximately 27 copies) for recombinant plasmid containing the inserted LSU rDNA D1-D2, and 0.17 cells for crude DNA extract of P. minimum, which was consistently 100 times more sensitive than regular PCR. Interfering test suggested that the performance of HRCA-LFD is stable and would not be affected by other non-target species. The HRCA-LFD results of field samples that are comparable with microscopic examination confirmed that the developed method is competent for detection of target cells in field samples. In conclusion, the developed HRCA-LFD exhibiting stable performance is specific, sensitive, and rapid, which provides a good alternative to traditional microscopic examination for the detection of P. minimum cells in field samples.


Subject(s)
Dinoflagellida , Nucleic Acid Amplification Techniques , DNA, Ribosomal , Polymerase Chain Reaction , Sensitivity and Specificity
14.
Onco Targets Ther ; 13: 3977-3985, 2020.
Article in English | MEDLINE | ID: mdl-32494153

ABSTRACT

INTRODUCTION: Long non-coding RNA (lncRNA) was reported to be a crucial regulator in cancer. In this work, our purpose is to explore the biological roles of nuclear paraspeckle assembly transcript 1 (NEAT1) in gastric cancer (GC). METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect NEAT1 expression in GC cells and normal cells. GC cell behaviors after NEAT1 overexpression or downregulation were analyzed by Cell Counting Kit-8 assay, colony formation assay, wound-healing assay, and flow cytometry assay. Bioinformatic tools were used to analyze the significance of NEAT1 in GC. The involvement of microRNA-365a-3p (miR-365a-3p) and ATP-binding cassette subfamily C member 4 (ABCC4) in the biological roles of NEAT1 in GC progression was validated by luciferase activity reporter assay and rescue experiments. RESULTS: We found NEAT1 increased expression in both GC tissues and cells and correlated with poorer overall survival of cancer patients. We found NEAT1 overexpression promotes, while its knockdown inhibits GC cell proliferation, colony formation, invasion, and cell cycle progression in vitro. Mechanism analyses showed that NEAT1 serves as a ceRNA to upregulate ABCC4 expression via sponging miR-365a-3p. CONCLUSION: In this study, we revealed a NEAT1/miR-365a-3p/ABCC4 triplet in GC progression, which may provide novel targeted therapy markers for GC.

15.
Biomaterials ; 201: 42-52, 2019 05.
Article in English | MEDLINE | ID: mdl-30784771

ABSTRACT

Accurate treatment of photothermal therapy (PTT) is crucial to avoid the unnecessary injury of normal cells and tissues. Therefore the real-time temperature monitoring in the PTT process has drawn more and more attention in recent years. Herein, we designed and prepared one kind of lanthanide (Ln3+)-doped up-conversion nanocomposites with multi-functions, which can not only provide temperature feedback in PTT process, but also play the photodynamic therapy (PDT) function for the synergistic effect of tumor therapy. Based on NaYF4:Yb, Er up-conversion nanoparticles (UCNPs), mesoporous SiO2 was modified on the surface combined with photosensitizer Chlorin e6 (Ce6) molecules, which could be excited by red emission of Er3+ under the 980 nm laser. Cit-CuS NPs were further linked on the surface of the composite served as photothermal conversion agent, therefore, the temperature of the PTT site can be monitored by recording the ratio of I525/I545 of green emissions, especially within the physiological range. Based on the guidance obtained from spectral experiments, we further investigated the dual-modal therapy effect both in vitro and in vivo, respectively, and acquired decent results.


Subject(s)
Lanthanoid Series Elements/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Animals , Apoptosis , Copper/chemistry , Mice , Mice, Inbred BALB C , Photochemotherapy , Reactive Oxygen Species/chemistry , Temperature
16.
Dose Response ; 16(3): 1559325818789841, 2018.
Article in English | MEDLINE | ID: mdl-30181729

ABSTRACT

BACKGROUND: Polyacrylic acid (PAA)-coated gold nanorods (GNRs) were prepared in this research, and then the structure, stability, temperature increment efficiency, and biocompatibility of GNRs@PAA were detected. METHODS: It was demonstrated that GNRs@PAA coupled with an 808 nm laser had superior efficiency of hyperthermia therapy for MG63 human osteosarcoma cell. RESULTS: The mechanism of photothermal therapy of GNRs@PAA was explored, and it was proved that damaged cell membrane and DNA integration caused cell apoptosis and death, and the cell apoptosis rate had been obviously promoted by in vitro photothermal therapy which exhibited time-dose dependence. CONCLUSION: The results demonstrated that the GNRs@PAA could be a promising candidate for phototherapeutic applications in human osteosarcoma.

17.
Chem Sci ; 9(20): 4708-4718, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29899966

ABSTRACT

The direct conversion of syngas into lower olefins is a highly attractive route for the synthesis of lower olefins. The selectivity of lower olefins via the conventional Fischer-Tropsch (FT) synthesis is restricted to ∼60% with high CH4 selectivity due to the limitation by the Anderson-Schulz-Flory (ASF) distribution. Here, we report the design of bifunctional catalysts for the direct conversion of syngas into lower olefins with selectivity significantly breaking the ASF distribution. The selectivity of C2-C4 olefins reached 87% at a CO conversion of 10% and was sustained at 77% by increasing CO conversion to 29% over a bifunctional catalyst composed of Zn-doped ZrO2 nanoparticles and zeolite SSZ-13 nanocrystals. The selectivity of CH4 was lower than 3% at the same time. It is demonstrated that the molar ratio of Zn/Zr, the density of Brønsted acid sites of SSZ-13 and the proximity of the two components play crucial roles in determining CO conversion and lower-olefin selectivity. Our kinetic studies indicate that methanol and dimethyl ether (DME) are key reaction intermediates, and the conversion of syngas to methanol/DME is the rate-determining step over the bifunctional catalyst. Formate and methoxide species have been observed on Zn-doped ZrO2 surfaces during the activation of CO in H2, and the formed methanol/DME are transformed into lower olefins in SSZ-13.

18.
ACS Appl Mater Interfaces ; 9(36): 30510-30518, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28829566

ABSTRACT

Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO2 inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic Fe3O4@C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO2 can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA). The improvement of CTCs capture efficiency reaches a surprising factor of 20 for the IOPC interface compared to that on flat glass, suggesting that the IOPCs are responsible for the dramatic enhancement of the capture efficiency of MCF-7 cells. IOPC substrate with pore size of 415 nm leads to the optimal CTCs capture efficiency of 92% with 1 mL/h. Besides the cell affinity, IOPCs also have the advantage of light scattering property which can enhance the excitation and emission light of fluorescence labels, facilitating the real-time monitoring of CTCs capture. The IOPC-based platform demonstrates excellent performance in CTCs capture, which will take an important step toward specific recognition of disease-related rare cells.


Subject(s)
Neoplastic Cells, Circulating , Cell Adhesion Molecules , Humans , MCF-7 Cells , Nanoparticles
19.
Dose Response ; 15(2): 1559325817711511, 2017.
Article in English | MEDLINE | ID: mdl-28717348

ABSTRACT

AIM: The phenomena of hypergravity and microwave radiation are widespread, which cause more and more concern for the hazards to human health. The aim of this study was to investigate the synergistic effect of microwave radiation and hypergravity on rats and observe the protective effect of Rana sylvatica Le conte oil. METHODS: Rats were exposed to microwave radiation and hypergravity, and the rat weight, the climbing pole height, serum enzyme activities, blood urea nitrogen concentration, and total antioxidant capacity were detected. RESULTS: The climbing pole height, the activities of choline acetyl transferase and cholinesterase, and the total antioxidant capacity decreased, whereas the activities of alanine aminotransferase, aspartate aminotransferase, areatine kinase, isocitric dehydrogenase, hydroxybutyrate dehydrogenase, and the blood urea nitrogen concentration increased in the hypergravity irradiation group as compared with the others. CONCLUSION: These results imply that the motion and nervous system of rats might be affected critically by the synergistic effect of microwave radiation and hypergravity, and it causes damage to most rat organs, such as the bone, skeletal muscle, liver, heart, and kidney, and the antioxidant effect is also damaged, while the injury resulted from it could be protected by Rana sylvatica Le conte oil.

20.
Biomaterials ; 138: 69-79, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28554009

ABSTRACT

Detection and isolation of circulating tumor cells (CTCs) play a pivotal role in the diagnosis and prognosis of cancer, while the high capture efficiency and purity of CTCs are difficult to achieve simultaneously among the various isolation methods. In this work, we designed an inverted microchip integrating silicon nanowires (SiNWs) and multifunctional magnetic nanocomposites (Fe3O4@C6/Ce6@silane, Coumarin 6 (C6), Chlorin e6 (Ce6)) for enhanced capture efficiency and purity of CTCs. The Fe3O4@C6/Ce6@silane conjugated with antibody can label the CTCs and pull them to the upside SiNWs capture surface by the upward magnetic field with high purity. This inverted structure was also featured with real-time detection and photodynamic therapy (PDT) of CTCs with the confocal laser scanning microscope (CLSM). The results indicate the important role of the composites labels and the magnetic field, which greatly improves the capture purity of the CTCs to 90%. Meanwhile, capture efficiency of CTCs achieve to 90.3% in culture medium and 82% in blood with 2 mL/h flow rate, respectively. Based on the structure of the device and composites, the captured CTCs could be directly inactivated by the in situ photodynamic therapy in the capture process which holds positive impact to block cancer spread.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Separation/methods , Magnetite Nanoparticles/chemistry , Microfluidic Analytical Techniques , Neoplasms/diagnosis , Neoplastic Cells, Circulating/chemistry , Antibodies, Immobilized/chemistry , Antineoplastic Agents/chemical synthesis , Chlorophyllides , Coumarins/chemistry , HeLa Cells , Humans , Lab-On-A-Chip Devices , MCF-7 Cells , Magnetic Fields , Microscopy, Confocal , Nanoconjugates/chemistry , Nanowires/chemistry , Neoplasms/pathology , Photochemotherapy , Porphyrins/chemistry , Silanes/chemistry , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...