Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Diabetes Obes Metab ; 26(4): 1395-1406, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287130

ABSTRACT

AIM: Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS: This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS: E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION: E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Exenatide/adverse effects , Healthy Volunteers , Area Under Curve , Glucose Tolerance Test , Double-Blind Method , Dose-Response Relationship, Drug
2.
Signal Transduct Target Ther ; 8(1): 20, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596779

ABSTRACT

An ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of a mosaic-type recombinant vaccine candidate, named NVSI-06-09, as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had administered two or three doses of inactivated vaccine BBIBP-CorV at least 6 months prior to enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. Between May 25 and 30, 2022, 516 adults received booster vaccination with 260 in NVSI-06-09 group and 256 in BBIBP-CorV group. Interim results showed a similar safety profile between two booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 post-booster, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those by BBIBP-CorV. Our findings indicated that a booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against divergent SARS-CoV-2 variants, including Omicron and its sub-lineages.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , SARS-CoV-2 , COVID-19/prevention & control
3.
Signal Transduct Target Ther ; 7(1): 172, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35665745

ABSTRACT

The increased coronavirus disease 2019 (COVID-19) breakthrough cases pose the need of booster vaccination. We conducted a randomised, double-blinded, controlled, phase 2 trial to assess the immunogenicity and safety of the heterologous prime-boost vaccination with an inactivated COVID-19 vaccine (BBIBP-CorV) followed by a recombinant protein-based vaccine (NVSI-06-07), using homologous boost with BBIBP-CorV as control. Three groups of healthy adults (600 individuals per group) who had completed two-dose BBIBP-CorV vaccinations 1-3 months, 4-6 months and ≥6 months earlier, respectively, were randomly assigned in a 1:1 ratio to receive either NVSI-06-07 or BBIBP-CorV boost. Immunogenicity assays showed that in NVSI-06-07 groups, neutralizing antibody geometric mean titers (GMTs) against the prototype SARS-CoV-2 increased by 21.01-63.85 folds on day 28 after vaccination, whereas only 4.20-16.78 folds of increases were observed in control groups. For Omicron variant, the neutralizing antibody GMT elicited by homologous boost was 37.91 on day 14, however, a significantly higher neutralizing GMT of 292.53 was induced by heterologous booster. Similar results were obtained for other SARS-CoV-2 variants of concerns (VOCs), including Alpha, Beta and Delta. Both heterologous and homologous boosters have a good safety profile. Local and systemic adverse reactions were absent, mild or moderate in most participants, and the overall safety was quite similar between two booster schemes. Our findings indicated that NVSI-06-07 is safe and immunogenic as a heterologous booster in BBIBP-CorV recipients and was immunogenically superior to the homologous booster against not only SARS-CoV-2 prototype strain but also VOCs, including Omicron.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , SARS-CoV-2
4.
Nat Commun ; 13(1): 3654, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760812

ABSTRACT

NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluate the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in BBIBP-CorV recipients in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who have administered two doses of BBIBP-CorV 4-6-month, 7-9-month and >9-month earlier, respectively, are randomized 1:1 to receive either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The incidence of adverse reactions is low, and the overall safety profile is quite similar between two booster regimens. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster are significantly higher than those by BBIBP-CorV booster against not only SARS-CoV-2 prototype strain but also multiple variants of concerns (VOCs). Especially, the neutralizing antibody GMT against Omicron variant induced by heterologous NVSI-06-08 booster reaches 367.67, which is substantially greater than that boosted by BBIBP-CorV (GMT: 45.03). In summary, NVSI-06-08 is safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which is immunogenically superior to the homologous boost with another dose of BBIBP-CorV.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G , SARS-CoV-2
5.
Bioorg Med Chem Lett ; 29(14): 1719-1726, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31126854

ABSTRACT

Aminopeptidase N (APN) belongs to the aminopeptidase family, which is widely distributed throughout the animal and plant kingdoms. APN is thought to be a very important target for cancer therapy as it is linked to cancer progression and metastasis. However, bestatin (Ubenimex) is the only approved drug that targets various aminopeptidases for the treatment of acute myelocytic leukemia and lymphedema. A compound 3-amino-2-hydroxy-4-phenylbutanoylvalylisoleucine (also known as LYRM03), isolated from a Streptomyces strain HCCB10043, exhibited more potent inhibitory activity than bestatin. In this work, we applied a chemical synthesis strategy to generate LYRM03 to overcome the low yields typically achieved from fermentation. Finally, we explored a suite of experiments to determine the bioactivity of LYRM03 and revealed that the metastasis of MDA-MB-231 cells was significantly restrained with LYRM03 treatment or injection both in vitro and in vivo. Because of its anti-metastasis capacity, further structure modifications of LYRM03 will be of interest for its use alone or in combination as a therapy in cancer.


Subject(s)
Breast Neoplasms/drug therapy , Protease Inhibitors/chemical synthesis , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Neoplasm Metastasis , Protease Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...