Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(11): 3829-3845, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37083970

ABSTRACT

The effects of biochar on soil improvement have been widely confirmed, but its influence on soil microorganisms is still unclear. Elucidating the complex relationship and the community assembly processes of microorganisms under biochar addition is important to understand the ecological effects of this substance. We performed a one-time addition of biochar on aeolian soils and planted maize (Zea mays L.) continuously for 7 years. Afterwards, soil samples were collected, and the 16S/ITS rRNA gene sequencing technology was used to study changes in microbial community structure, network characteristics, and community assembly processes in the aeolian soils. We found that biochar addition significantly increased the maize yield and changed the soil microbial community composition (ß-diversity), but had no significant effect on the microbial α-diversity. The addition of 31.5-126.0 Mg ha-1 of biochar led to a reduction of the rhizosphere bacterial network's edge number, average degree, and robustness, but had no significant effect on the fungal network properties. The bacterial community was controlled by deterministic processes, while fungi were mainly controlled by stochastic processes. The addition of 126.0 Mg ha-1 of biochar led to a transformation of the bacterial community's assembly processes from deterministic to stochastic. These results indicate that the stability of the rhizosphere bacterial community's complex network in aeolian soils diminishes under biochar addition, together changed the bacterial community's assembly processes. Fungi can instead effectively resist the environmental changes brought by biochar addition, and their network remains unchanged. These findings help clarify the effect of biochar addition on microbial interaction and assembly processes in aeolian soils characteristic of arid regions. KEY POINTS: • Biochar addition led to changes in the microbial community composition • Biochar addition reduced the network's stability of rhizosphere bacteria • Biochar addition changed the processes of the bacterial community assembly.


Subject(s)
Microbiota , Soil , Soil/chemistry , Soil Microbiology , Charcoal , Bacteria , Zea mays , Rhizosphere
2.
Int J Biol Macromol ; 232: 123290, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36682651

ABSTRACT

Eco-friendly packaging material with intelligent colorimetric performance has been a requirement for food safety and quality. This work focused on a food packaging material from regenerated cellulose films that added the grape seed extract (GSE) and polyethylene glycol 200 (PEG). FTIR and SEM techniques were employed to prove the compatibility of GSE with cellulose matrix. The composite film showed an enhanced elongation at break (16.61 %) and tensile strength (33.09 MPa). The addition of PEG and GSE also improved the water contact angle of regenerated-cellulose film from 53.8° to 83.8°. Moreover, the composite films exhibited UV-blocking properties while maintaining adequate transparency. The GSE induced the regenerated films with a macroscopic change in color under different pH conditions. Furthermore, the loading of GSE slowed down the decomposition of strawberries and delayed the self-biodegradation compared with the control for more than 3 days and 18 days. The present study showed a regenerated cellulose film with acceptable mechanical and hydrophilia properties, pH-responsiveness, anti-decomposition, and delayed biodegradation performances, indicating a potential color sensor in food packaging.


Subject(s)
Grape Seed Extract , Grape Seed Extract/chemistry , Food Packaging/methods , Cellulose/chemistry , Tensile Strength
3.
Front Microbiol ; 13: 1023444, 2022.
Article in English | MEDLINE | ID: mdl-36267182

ABSTRACT

Aeolian sandy soil is a key resource for supporting food production on a global scale; however, the growth of crops in Aeolian sandy soil is often impaired due to its poor physical properties and lack of nutrients and organic matter. Biochar can be used to enhance the properties of Aeolian sandy soil and create an environment more suitable for crop growth, but the long-term effects of biochar on Aeolian sandy soil and microbial communities need to be clarified. Here, a field experiment was conducted in which biochar was applied to a maize (Zea mays L.) field in a single application at different rates: CK, 0 Mg ha-1; C1, 15.75 Mg ha-1; C2, 31.50 Mg ha-1; C3, 63.00 Mg ha-1; and C4, 126.00 Mg ha-1. After 7 years of continuous maize cropping, verify the relationship between root architecture and soil microbial communities under biochar application using a root scanner and 16S/ITS rRNA gene sequencing. The application of biochar promoted the growth of maize. Specifically, total root length, total root surface area, total root volume, and root biomass were 13.99-17.85, 2.52-4.69, 23.61-44.41, and 50.61-77.80% higher in treatments in which biochar was applied (C2, C3, and C4 treatments) compared with the control treatment, respectively. Biochar application increased the diversity of bacterial communities, the ACE index, and Chao 1 index of C1, C2, C3, and C4 treatments increased by 5.83-8.96 and 5.52-8.53%, respectively, compared with the control treatment, and significantly changed the structure of the of bacterial communities in rhizosphere soil. However, there was no significant change in the fungal community. The growth of maize roots was more influenced by rhizosphere bacteria and less by fungal community. A microbial co-occurrence network revealed strong associations among rhizosphere microorganisms. The core taxa (Module hubs taxa) of the bulk soil microbial co-occurrence network were closely related to the total length and total surface area of maize roots, and the core taxa (Connectors taxa) of the rhizosphere soil were closely related to total root length. Overall, our findings indicate that the application of biochar promotes the growth of maize roots in aeolian sandy soil through its effects on bacterial communities in rhizosphere soil.

4.
Carbohydr Polym ; 276: 118789, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34823799

ABSTRACT

Natural macromolecules have been used to adsorb pollutants including heavy metal ions and organic dyes due to low-cost, accessible, biodegradable, and eco-friendly advantages. Pectin, an important natural polymer, possesses abundant carboxyl and hydroxyl functional groups that can interact with the metal and organic cations via electrostatic interaction; as well as be modified by other chemicals for preparing hybrid and composite materials. The resultant materials have been employed to remove pollutants from aqueous solution; the importance of chemical composition was unlocked. Here, we reviewed contaminant removal by pectin, and pectin-based hybrid and composite materials, and highlighted the role of functional groups on pollutant removal. The removal of heavy metal ions was mainly due to surface coordination, while that of organic cations to electrostatic interactions of the functional groups. Moreover, the influence of initial contaminant concentration was critically discussed. The comprehensive review can provide valuable information on pectin and its application in contaminant removal.

5.
Front Plant Sci ; 13: 990597, 2022.
Article in English | MEDLINE | ID: mdl-36684714

ABSTRACT

A large number of studies have reported the importance of bacterial communities in ecosystems and their responses to soil degradation, but the response mechanism in arid alpine wetlands is still unclear. Here, the non-degraded (ND), slightly degraded (SD), and heavily degraded (HD) regions of Bayinbuluk alpine wetland were used to analyzed the diversity, structure and function of bacterial communities in three degraded wetlands using 16S rRNA. The results showed that with the increase of degradation degree, the content of soil moisture (SM) and available nitrogen (AN) decreased significantly, plant species richness and total vegetation coverage decreased significantly, Cyperaceae (Cy) coverage decreased significantly, and Gramineae (Gr) coverage increased significantly. Degradation did not significantly affect the diversity of the bacterial community, but changed the relative abundance of the community structure. Degradation significantly increased the relative abundance of Actinobacteria (ND: 3.95%; SD: 7.27%; HD: 23.97%) and Gemmatimonadetes (ND: 0.39%; SD: 2.17%; HD: 10.78%), while significantly reducing the relative abundance of Chloroflexi (ND: 13.92%; SD: 8.68%; HD: 3.55%) and Nitrospirae (ND: 6.18%; SD: 0.45%; HD: 2.32%). Degradation significantly reduced some of the potential functions in the bacterial community associated with the carbon (C), nitrogen (N) and sulfur (S) cycles, such as hydrocarbon degradation (ND: 25.00%; SD: 1.74%; HD: 6.59%), such as aerobic ammonia oxidation (ND: 5.96%; SD: 22.82%; HD: 4.55%), and dark sulfide oxidation (ND: 32.68%; SD: 0.37%; HD: 0.28%). Distance-based redundancy analysis (db-RDA) results showed that the bacteria community was significantly related to the TC (total carbon) and Gr (P < 0.05). The results of linear discriminant analysis effect size (LEfSe) analysis indicate significant enrichments of Alphaproteobacteria and Sphingomonas in the HD area. The vegetation communities and soil nutrients changed significantly with increasing soil degradation levels, and Sphingomonas could be used as potential biomarker of degraded alpine wetlands.

6.
Front Microbiol ; 12: 797306, 2021.
Article in English | MEDLINE | ID: mdl-35126333

ABSTRACT

Although a large number of studies have reported the importance of microbial communities in terrestrial ecosystems and their response to nitrogen (N) application, it is not clear in arid alpine wetlands, and the mechanisms involved need to be clarified. Therefore, the response of the soil microbial community in a swamp meadow to short-term (1 year) N application (CK: 0, N1: 8, N2: 16 kg⋅N⋅hm-2⋅a-1) was studied using 16S/ITS rRNA gene high-throughput sequencing technology. Results showed that N application had no significant effect on soil microbial community diversity, but significantly changed soil bacterial community structure. N1 and N2 treatments significantly reduced the relative abundance of Chloroflexi (18.11 and 32.99% lower than CK, respectively). N2 treatment significantly reduced the relative abundance of Nitrospirae (24.94% lower than CK). Meanwhile, N application reduced the potential function of partial nitrogen (N) and sulfur (S) cycling in bacterial community. For example, compared with CK, nitrate respiration and nitrogen respiration decreased by 35.78-69.06%, and dark sulfide oxidation decreased by 76.36-94.29%. N application had little effect on fungal community structure and function. In general, short-term N application directly affected bacterial community structure and indirectly affected bacterial community structure and function through available potassium, while soil organic carbon was an important factor affecting fungal community structure and function.

7.
J Chromatogr A ; 1358: 52-9, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25037774

ABSTRACT

In this study, a novel dual-template molecularly imprinted polymer (MIP)-coated stir bar was prepared and coupled with high-performance liquid chromatography (HPLC) for the analysis of environmental estrogens in complex samples. Dual-template MIP coating was homogeneous and porous with an average thickness of 5µm. Moreover, it could be used for at least 50 times and be kept for at least 12 months in a dryer without any damage. The MIP-coated stir bar showed excellent selectivity to bisphenols and steroids. The method for the determination of bisphenols and steroids in complex samples via MIP-coated stir bar sorptive extraction coupled with HPLC was developed. The method was successfully applied in the analysis of five estrogens in lake and river water samples with recoveries of 71.2- 96.4% and 62.8-98.0%, respectively. The method was also successfully applied to the analysis of five estrogens in three plastic samples with recoveries of 67.7-99.1%, 68.8-99.9%, and 74.8-101.8%. The limit of quantitation was 1.0-5.0µg/L. The proposed method is suitable for the simultaneous determination of multiple trace environmental estrogens in water and plastic samples.


Subject(s)
Benzhydryl Compounds/isolation & purification , Endocrine Disruptors/isolation & purification , Estrogens/isolation & purification , Phenols/isolation & purification , Plastics/analysis , Water Pollutants, Chemical/isolation & purification , Adsorption , Benzhydryl Compounds/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Endocrine Disruptors/chemistry , Estradiol/chemistry , Estradiol/isolation & purification , Estrogens/chemistry , Lakes/chemistry , Limit of Detection , Molecular Imprinting , Phenols/chemistry , Reference Standards , Rivers/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/standards , Surface Properties , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...