Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911828

ABSTRACT

The design of a series of novel flavone derivatives was synthesized as potential broad-spectrum antipsychotics by using multi-receptor affinity strategy between dopamine receptors and serotonin receptors. Among them, 7-(4-(4-(6-fluorobenzo[d]isoxazol-3-yl) piperidin- 1-yl) butoxy)-2,2-dimethylchroman-4-one (6j) exhibited a promising preclinical profile. Compound 6j not only showed high affinity for dopamine D2, D3, and serotonin 5-HT1A, 5-HT2A receptors, but was also endowed with low to moderate activities on 5-HT2C, α1, and H1 receptors, indicating a low liability to induce side effects such as weight gain, orthostatic hypotension and QT prolongation. In vivo behavioral studies suggested that 6j has favorable effects in alleviating the schizophrenia-like symptoms without causing catalepsy. Taken together, compound 6j has the potential to be further developed as a novel atypical antipsychotic.


Subject(s)
Antipsychotic Agents/chemistry , Chemistry Techniques, Synthetic , Drug Design , Flavones/chemistry , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/pharmacology , Flavones/chemical synthesis , Flavones/pharmacology , Ligands , Receptors, Dopamine D2/chemistry , Receptors, Serotonin/chemistry , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Structure-Activity Relationship
2.
Int J Pharm ; 586: 119600, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32629070

ABSTRACT

A potent antipsychotic drug candidate, 7-(4-(4-(6-fluorobenzo[d]-isoxazol-3-yl)-piperidin-1-yl)butoxy)-4-methyl-8-chloro -2H-chromen-2-one mesylate(CY611), with good in vitro and in vivo antipsychotic effects was investigated for preformulation evaluation by crystallography methods. Three anhydrous polymorphs(Form I-III), a monohydrate(Form IV), and a NMP solvate(Form V) were discovered and characterized by powder X-ray diffraction, thermal analysis, attenuated total reflection-fourier transform infrared spectroscopy and scanning electron microscopy. Form I, monohydrate Form IV, and a NMP solvate Form V of the drug candidate were isolated, and their structures were determined by single crystal X-ray diffraction. IDR and relative stability experiment were performed. Although Form II has the fastest release rate in water, it easy transformed to monohydrate which has the lowest release rate. In vivo pharmacokinetic study showed that the Form III has the highest bioavailability at 35.4%. Considering the balance between the physicochemical properties, bioavailability and manufacturability of the available polymorphs, Form III may be the optimal form candidate for the eventual formulation.


Subject(s)
Antipsychotic Agents , Calorimetry, Differential Scanning , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
J Pharm Sci ; 109(7): 2156-2165, 2020 07.
Article in English | MEDLINE | ID: mdl-32240697

ABSTRACT

Different solid forms possess various physicochemical properties, which can significantly affect the stability, bioavailability, and manufacturability of the final product. DP-VPA, a complex of 1-stearoyl-2-valproyl-sn-glycero-3-phosphatidylcholine (DP-VPA-C18) and 1-palmitoyl-2-valproyl-sn-glycero-3-phosphatidylcholine (DP-VPA-C16), is currently under development as an antiepileptic drug. DP-VPA-C16 and DP-VPA-C18 crystallize together in solid solution forms. The solid forms of DP-VPA solid solution were studied herein. Powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), dynamic vapor sorption (DVS) and optical microscopy were used to characterize the different crystalline forms, known as polymorphs. The physicochemical properties, including hygroscopicity, thermodynamic behavior, and relative stability, of each form were investigated. DVS analysis showed that DP-VPA solid solution reduced the hygroscopicity of DP-VPA-C16. The relative humidity stability study revealed that Forms A and B are relatively stable, while Forms A-1, B-1, C and D are highly unstable under natural humidity. Further analysis revealed that Form A transforms into Form B through milling. Given the physicochemical properties of the available physical forms, Form B may be the optimal form for the formulation and development of antiepileptic drugs.


Subject(s)
X-Ray Diffraction , Calorimetry, Differential Scanning , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Valproic Acid/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL