Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 18(8): e0288911, 2023.
Article in English | MEDLINE | ID: mdl-37561734

ABSTRACT

In this study, the influences of mulberry leaf extract (MLE) addition on the physicochemical properties including the specific volume, texture and sensory features of white bread (WB) were evaluated by the sensory analysis technology. A double-blind, randomised, repeat-measure design was used to study the impact of MLE addition on the postprandial blood glucose response as well as the satiety index of WB. Results showed that the addition of MLE showed no significant effects on the physicochemical properties of WB except for the slight changes of color and bitterness. The addition of MLE significantly reduced the total blood glucose rise after ingestion of WB over 120 minutes, and reduced the GI value of WB in a dose-effect relationship. When the concentration of MLE reached 1.5 g per 100 g available carbohydrate, the GI value of WB could be reduced from 77 to 43. This study provides important information in terms of the appropriateness of MLE when added to more complex real food, the dose-dependent relationship could supply a reference for the application of MLE.


Subject(s)
Bread , Glycemic Index , Morus , Plant Extracts , Blood Glucose/analysis , Blood Glucose/drug effects , Bread/adverse effects , Cross-Over Studies , Glycemic Index/drug effects , Insulin , Morus/chemistry , Plant Extracts/pharmacology , Postprandial Period , Triticum , Double-Blind Method , Humans
2.
ACS Omega ; 4(6): 10370-10375, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460131

ABSTRACT

There is a large amount of Camellia oleifera shells generated as a waste product from industrial processes. Therefore, the high-value utilization of C. oleifera shells is a hotspot of current research. The thermal characteristics and kinetics of waste Camellia shells (WCOSs) were analyzed by thermogravimetry with gas chromatography-mass spectrometry (TG-GC/MS). The thermal behavior of WCOSs was studied at 10, 20, 40, and 60 °C/min, and the distributed activation energy model (DAEM) was used to research the kinetics and activation energies. The activation energies of WCOSs based on the DAEM ranged from 68.64 to 244.49 kJ/mol, corresponding to the conversion rate from 0.10 to 0.90. The correlation coefficient (R 2) shows the best fit, and it ranged from 0.921 to 0.994. Pyrolysis products at four key temperature points (228, 296, 492, and 698 °C) were studied via GC/MS. Many compounds were detected at the different temperatures. With the increase of temperature, furans, benzene, and long-chain alkanes were produced successively. This data will help to expand the utilization of WCOSs.

3.
R Soc Open Sci ; 5(10): 181126, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30473856

ABSTRACT

Macadamia nut shell (MNS) is a type of waste lignocellulose obtained from macadamia nut production processing. Large MNS wastes caused serious resource waste and environmental pollution. So, preparation of hydrochars from MNS via hydrothermal carbonization (HTC) is of great significance. HTC of MNS was conducted to study the effect of process parameters, including HTC temperature (180-260°C) and residence time (60-180 min) on the properties of hydrochars. Results showed that the increase in HTC temperature and residence time decreased the mass yield of hydrochars and increased the high heating value of hydrochars. Furthermore, the C content of hydrochars increased, whereas the H and O contents decreased. Mass yield of hydrochar is 46.59%, energy yield is 64.55% and the higher heating value is 26.02 MJ kg-1 at a temperature of 260°C and time of 120 min. The surface structure of hydrochars was rougher compared with that of MNS as observed via scanning electron microscopy. The chemical and combustion behaviour of MNS and hydrochars was analysed by Fourier transform infrared spectroscopy, and thermogravimetric analysis indicated that decarboxylation and dehydration reactions were the predominant pathways during the HTC process. Results showed that HTC can facilitate the transformation of MNS into solid fuel.

SELECTION OF CITATIONS
SEARCH DETAIL