Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(18): 8553-8559, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37681677

ABSTRACT

Weighing particles above the megadalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry under entirely atmospheric conditions. This advance reduces the overall complexity and cost while increasing the limit of detection. However, this technique required the tracking of two mechanical modes and the accurate knowledge of mode shapes that may deviate from their ideal values, especially due to air damping. Here, we used a NEMS architecture with a central platform, which enables the calculation of mass by single-mode measurements. Experiments were conducted using polystyrene and gold nanoparticles to demonstrate the successful acquisition of mass spectra using a single mode with an improved areal capture efficiency. This advance represents a step forward in NEMS-MS, bringing it closer to becoming a practical application for the mass sensing of nanoparticles.

2.
ACS Nano ; 16(3): 3821-3833, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35785967

ABSTRACT

Mass spectrometry of intact nanoparticles and viruses can serve as a potent characterization tool for material science and biophysics. Inaccessible by widespread commercial techniques, the mass of single nanoparticles and viruses (>10MDa) can be readily measured by nanoelectromechanical systems (NEMS)-based mass spectrometry, where charged and isolated analyte particles are generated by electrospray ionization (ESI) in air and transported onto the NEMS resonator for capture and detection. However, the applicability of NEMS as a practical solution is hindered by their miniscule surface area, which results in poor limit-of-detection and low capture efficiency values. Another hindrance is the necessity to house the NEMS inside complex vacuum systems, which is required in part to focus analytes toward the miniscule detection surface of the NEMS. Here, we overcome both limitations by integrating an ion lens onto the NEMS chip. The ion lens is composed of a polymer layer, which charges up by receiving part of the ions incoming from the ESI tip and consequently starts to focus the analytes toward an open window aligned with the active area of the NEMS electrostatically. With this integrated system, we have detected the mass of gold and polystyrene nanoparticles under ambient conditions and with two orders-of-magnitude improvement in capture efficiency compared to the state-of-the-art. We then applied this technology to obtain the mass spectrum of SARS-CoV-2 and BoHV-1 virions. With the increase in analytical throughput, the simplicity of the overall setup, and the operation capability under ambient conditions, the technique demonstrates that NEMS mass spectrometry can be deployed for mass detection of engineered nanoparticles and biological samples efficiently.


Subject(s)
COVID-19 , Nanoparticles , Viruses , Atmospheric Pressure , Humans , Mass Spectrometry/methods , SARS-CoV-2
3.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34835670

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates prohibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for reconfigurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.

4.
Nano Lett ; 21(15): 6533-6539, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34319115

ABSTRACT

Piezoresistive strain gauges allow for electronic readout of mechanical deformations with high fidelity. As piezoresistive strain gauges are aggressively being scaled down for applications in nanotechnology, it has become critical to investigate their physical attributes at different limits. Here, we describe an experimental approach for studying the piezoresistive gauge factor of a gold thin-film nanoresistor as a function of frequency. The nanoresistor is fabricated lithographically near the anchor of a nanomechanical doubly clamped beam resonator. As the resonator is driven to resonance in one of its normal modes, the nanoresistor is exposed to frequency-dependent strains of ε ≲ 10-5 in the 4-36 MHz range. We calibrate the strain using optical interferometry and measure the resistance changes using a radio frequency mix-down technique. The piezoresistive gauge factor γ of our lithographic gold nanoresistors is γ ≈ 3.6 at 4 MHz, in agreement with comparable macroscopic thin metal film resistors in previous works. However, our γ values increase monotonically with frequency and reach γ ≈ 15 at 36 MHz. We discuss possible physics that may give rise to this unexpected frequency dependence.

5.
Phys Rev Lett ; 124(4): 046101, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058788

ABSTRACT

Buckling of mechanical structures results in bistable states with spatial separation, a feature desirable for sensing, shape configuration, and mechanical computation. Although different approaches have been developed to access buckling at microscopic scales, such as heating or prestressing beams, little attention has been paid so far to dynamically control all the parameters critical for the bifurcation-the compressive stress and the lateral force on the beam. Here, we develop an all-electrostatic architecture to control the compressive force, as well as the direction and amount of buckling, without significant heat generation on micro- or nanostructures. With this architecture, we demonstrated fundamental aspects of device function and dynamics. By applying voltages at any of the digital electronics standards, we have controlled the direction of buckling. Lateral deflections as large as 12% of the beam length were achieved. By modulating the compressive stress and lateral electrostatic force acting on the beam, we tuned the potential energy barrier between the postbifurcation stable states and characterized snap-through transitions between these states. The proposed architecture opens avenues for further studies in actuators, shape-shifting devices, thermodynamics of information, and dynamical chaos.

6.
Nano Lett ; 19(6): 3583-3589, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31117750

ABSTRACT

Nanoelectromechanical systems (NEMS) have emerged as a promising technology for performing the mass spectrometry of large biomolecules and nanoparticles. As nanoscale objects land on NEMS sensors one by one, they induce resolvable shifts in the resonance frequency of the sensor proportional to their weight. The operational regime of NEMS sensors is often limited by the onset of nonlinearity, beyond which the highly sensitive schemes based on frequency tracking by phase-locked loops cannot be readily used. Here, we develop a measurement architecture with which to operate at the nonlinear regime and measure frequency shifts induced by analytes in a rapid and sensitive manner. We used this architecture to individually characterize the mass of gold nanoparticles and verified the results by performing independent measurements of the same nanoparticles based on linear mass sensing. Once the feasibility of the technique is established, we have obtained the mass spectrum of a 20 nm gold nanoparticle sample by individually recording about 500 single-particle events using two modes working sequentially in the nonlinear regime. The technique obtained here can be used for thin nanomechanical structures that possess a limited dynamic range.

7.
Sci Rep ; 8(1): 7180, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29739995

ABSTRACT

Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.

8.
Opt Lett ; 43(9): 2208-2211, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714791

ABSTRACT

Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.

9.
Phys Chem Chem Phys ; 17(35): 23081-7, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26273953

ABSTRACT

The growth of nearly full coverage of multilayer graphene on the surface of a 99.8% purity copper foil has been experimentally studied. It has been shown that the film thickness can be controlled by a single parameter, the growth time, and growth can be extended until nearly full coverage of more than one layer graphene over the copper surface. The results are supported by scanning electron microscopy and Raman analysis together with optical transmittance and sheet resistance measurements. It has been verified that silicon oxide impurity particles within the copper act as catalysts and the seeds of multilayer graphene islands. The linear increase of the average thickness of graphene to the growth time has been attributed to the interplay between the mean distance between the impurities on the surface and the molecular mean free path in the process gas. A qualitative model is proposed to explain the microscopic mechanism of the multilayer growth on copper. These results contribute to the understanding of the chemical vapour deposition growth kinetics towards the objective of large area high quality graphene production with tuneable layer thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...