Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 14(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672383

ABSTRACT

The present meta-analysis aimed to determine the underlying effects of different saponins extracted from different sources on the production performance, milk yield, digestibility, rumen fermentation, blood metabolites, and nitrogen utilization of ruminants. A total of 26 papers comprising 66 in vivo studies (148 data points of dietary treatments) were evaluated in the present study. The databases were statistically analyzed using the mixed model procedure of SAS, where experiments considered random effects and tannin-related factors were treated as fixed effects. Statistical procedures were then continued in comparing different sources of saponin extract through Mixed Model analysis, where experiments were also random factors and sources of saponin extract were fixed factors. The evidence revealed in the present meta-analysis that saponin supplementation of up to 40 g/kg DM appears to have no detrimental impact on feed intake across ruminant types, suggesting that it does not significantly affect diet palatability. However, the results indicated that there are species-specific responses to saponin supplementation, particularly in relation to palatability and nutrient absorption efficiency, with larger ruminants being better able to tolerate the bitterness induced by saponin extracts. Furthermore, the study found that saponin extracts can influence nutrient digestibility and rumen fermentation dynamics, with different effects observed in large and small ruminants. While some saponin extracts can enhance average daily weight gain and milk yield, others can have adverse effects, highlighting the importance of considering both saponin sources and animal physiological condition when developing nutritional strategies. Additionally, optimization of ruminant production by utilizing saponin extracts is necessary to avoid negative health implications, such as increased blood creatinine levels. Different saponin extracts utilization in ruminant nutrition and environmental management, have a distinct understanding associated to their various bioactive properties. However, among the saponin sources, saponin extracted from Quilaja saponaria is more likely to improve large ruminant production performance while maintaining ruminant health and metabolism, but negatively affect small ruminants. Further research is needed to unravel the intricate effects of different saponin sources on ruminant health and productivity, emphasizing the importance of tailored dietary strategies that consider the unique physiological and metabolic characteristics of the target livestock.

2.
Anim Sci J ; 93(1): e13765, 2022.
Article in English | MEDLINE | ID: mdl-36065082

ABSTRACT

Extracts of Acacia and Quebracho have been used as a feed additive in ruminant diets; the effects, however, have been varied. This study used a meta-analysis approach to evaluate the use of those extracts on nutrient utilization, performance, and methane production of ruminants. A database was developed from 37 published papers comprising 152 dietary treatments. The result showed that a higher concentration of tannins was associated with a decrease (p < 0.05) in nutrient intake and digestibility. An increasing tannin concentration was negatively correlated with ammonia, acetic acid, and the ratio of acetic to propionic acid. Methane production decreased (p < 0.01) with the increasing tannin concentration. Nitrogen (N) balance parameters were not affected by the tannin concentrations, but fecal N excretion increased (p < 0.01) as the tannin concentration increased. The relationships between the Acacia and Quebracho and the changes in organic matter intake, milk fat concentration, butyric acid, valeric acid, and methane production were significantly different. In conclusion, it is possible to use both condensed tannins (CT) extracts as a methane emission mitigation without impairing the ruminant performance. Furthermore, the Quebracho showed more pronounced to decrease ruminal protein degradation and lower methane emission than the Acacia.


Subject(s)
Acacia , Tannins , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Methane/metabolism , Nutrients/analysis , Plant Extracts , Rumen/metabolism , Ruminants/metabolism
3.
J Anim Sci Biotechnol ; 13(1): 5, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35027089

ABSTRACT

BACKGROUND: Methane production and fatty acids (FA) biohydrogenation in the rumen are two main constraints in ruminant production causing environmental burden and reducing food product quality. Rumen functions can be modulated by the biologically active compounds (BACs) of plant origins as shown in several studies e.g. reduction in methane emission, modulation of FA composition with positive impact on the ruminant products. Coleus amboinicus Lour. (CAL) contains high concentration of polyphenols that may potentially reduce methane production and modulate ruminal biohydrogenation of unsaturated FA. This study aimed to investigate the effect of BAC of Coleus amboinicus Lour. (CAL) fed to growing lambs on ruminal methane production, biohydrogenation of unsaturated FA and meat characteristics. In this study, the in vitro experiment aiming at determining the most effective CAL dose for in vivo experiments was followed by two in vivo experiments in rumen-cannulated rams and growing lambs. Experiment 1 (RUSITEC) comprised of control and three experimental diets differing in CAL content (10%, 15%, and 20% of the total diet). The two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Exp. 2) and 16 growing lambs (Exp. 3). Animals were assigned into the control (CON) and experimental (20% of CAL) groups. Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). RESULTS: CAL lowered in vitro methane production by 51%. In the in vivo Exp. 3, CAL decreased methane production by 20% compared with the CON group, which corresponded to reduction of total methanogen counts by up to 28% in all experiments, notably Methanobacteriales. In Exp. 3, CAL increased or tended to increase populations of some rumen bacteria (Ruminococcus albus, Megasphaera elsdenii, Butyrivibrio proteoclasticus, and Butyrivibrio fibrisolvens). Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in vivo. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. CAL reduced the mRNA expression of four out of five genes investigated in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). CONCLUSIONS: Summarizing, polyphenols of CAL origin (20% in diet) mitigated ruminal methane production by inhibiting the methanogen communities. CAL supplementation also improved ruminal environment by modulating ruminal bacteria involved in fermentation and biohydrogenation of FA. Besides, CAL elevated the LNA concentration, which improved meat quality through increased deposition of n-3 PUFA.

4.
Animals (Basel) ; 11(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34828048

ABSTRACT

The objective of this meta-analysis was to elucidate whether there are general underlying effects of dietary tannin extract supplementation on rumen fermentation, digestibility, methane production, performance, as well as N utilisation in ruminants. A total of 70 papers comprised of 348 dietary treatments (from both in vivo and in situ studies) were included in the study. The database was then statistically analysed by the mixed model methodology, in which different experiments were considered as random effects and tannin-related factors were treated as fixed effects. The results revealed that an increased level of tannin extract inclusion in the diet lowered ruminant intake, digestibility, and production performance. Furthermore, the evidence also showed that an increased level of tannin extract decreased animal N utilisation where most of rumen by-pass protein was not absorbed well in the small intestine and directly excreted in the faeces. Due to the type of tannin extract, HT is more favourable to maintain nutrient intake, digestibility, and production performance and to mitigate methane production instead of CT, particularly when supplemented at low (<1%) to moderate (~3%) levels.

5.
Vet World ; 14(6): 1405-1411, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34316185

ABSTRACT

BACKGROUND AND AIM: Tannins are functional secondary metabolites that may provide benefits to ruminants. However, to date, their effects on broiler chickens remain inconclusive. This study aimed to evaluate the effectiveness of dietary tannin levels on the performance, body organs, and amino acid (AA) digestibility of broiler chickens using a meta-analysis. MATERIALS AND METHODS: After verification and evaluation, a total of 22 articles were included in the present study. All data regarding dietary tannin dosages, performance, digestibility, and gastrointestinal physiology of broiler chickens were tabulated into a database. The database data were then statistically analyzed using mixed models, with tannin dose as a fixed effect and study as a random effect. RESULTS: High levels of dietary tannins negatively affected the average daily gain and average daily feed intake of broiler chickens according to linear patterns (p<0.001). In addition, dietary tannins decreased drumstick and liver weights, as well as bursa of Fabricius and spleen weight (p<0.05). Meanwhile, other carcass traits (i.e., thigh, wings, and body fat) were not influenced by dietary tannins. Regarding AA digestibility, high dietary tannin concentrations induced negative responses on isoleucine, leucine, and methionine digestibility (p<0.05). CONCLUSION: Dietary tannins appear to have a negative effect on broiler performance, lymphoid organ weight, and AA ileal digestibility. Hence, the addition of tannins to broiler diets is not recommended.

6.
Molecules ; 26(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068950

ABSTRACT

Coleus amboinicus Lour., Lamiaceae, is a perennial herb that is native to Indonesia and also cultivated in Africa, Asia and Australia. The major phytochemicals responsible for its bioactivity are rosmarinic acid (RA) and its analogues, flavonoids and abietane diterpenoids. The possibility of cultivation in a colder climate would extend the use of this herb and provide new opportunities to herb growers and livestock farmers. Our study to compare feed value and phytochemical composition of C. amboinicus plants cultivated in its original region, Indonesia, and in Poland. The crude protein content was significantly higher in plants cultivated in Indonesia compared to those cultivated in Poland-21% and 13% of dry matter, respectively. The higher ADF contents were detected in C. amboinicus cultivated in Indonesia, 38-41%, in comparison to 34% in plants cultivated in Poland. The phytochemical composition was also significantly influenced by the cultivation location. Polish samples were higher in polyphenols (RA and its analogues), and also had 1.5-2-fold higher antioxidant potential, as measured by DPPH scavenging, phosphomolybdenum reduction and Fenton reaction driven lipid peroxidation. The Indonesian samples contained more diterpenoid compounds, such as dihydroxyroyleanone, and the sum of terpenoids was ca. 10 times higher than in samples from Poland (15.59-23.64 vs. 1.87 µg/g of extracts). In conclusion, C. amboinicus is suitable for cultivation in non-optimal climatic conditions but some nutritional properties and bioactivity are significantly affected.


Subject(s)
Antioxidants/pharmacology , Coleus/chemistry , Coleus/growth & development , Phytochemicals/analysis , Animals , Discriminant Analysis , Feeding Behavior , Indonesia , Least-Squares Analysis , Poland , Principal Component Analysis , Sheep
7.
J Anim Physiol Anim Nutr (Berl) ; 105(5): 874-889, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32333621

ABSTRACT

The efficacy of methane (CH4 ) suppression using medium-chain fatty acids (MCFA) remains inconclusive, despite a number of studies on this topic are available. We thus carried out a meta-analysis to integrate the published data on different concentrations and types of MCFA such as lauric acid and myristic acid, which investigated ruminal methanogenesis and fermentation in in vitro and in vivo experiments. In vitro MCFA sources were classified either as pure MCFA (lauric acid, myristic acid and their combinations) or as natural MCFA-rich oils (canola oil enriched with lauric acids, coconut oil, krabok oil and palm kernel oil). The MCFA sources used in the in vivo studies were coconut oil, lauric acid, myristic acid and the combination of lauric and myristic acids. A total of 41 studies (20 in vitro and 21 in vivo studies) were compiled in our database, which included the data on CH4 emission, digestibility, ruminal fermentation products and microbial populations. The results showed that the amount of CH4 production per unit of digested organic matter decreased linearly under in vitro conditions (p < .01) and tended to decrease quadratically under in vivo conditions (p < .07) with increasing doses of MCFA. Populations of protozoa (p < .01) in both in vitro and in vivo responded negatively in a linear manner, whereas Archaea population diminished quadratically (p = .04) only in the in vitro conditions with increasing doses of MCFA. Increasing dietary MCFA concentrations also reduced the fibre digestibility linearly (p < .05) in both in vitro and in vivo conditions. CH4 production for different sources of MCFA decreased in following order: coconut oil > lauric acid > myristic acid > mixed lauric and myristic acids > palm kernel oil > canola oil enriched with lauric acids > krabok oil. It can be concluded that the effect of MCFA on ruminal methanogenesis depends on the amount and type of MCFA.


Subject(s)
Fatty Acids , Rumen , Animals , Diet/veterinary , Digestion , Fatty Acids/metabolism , Fermentation , Methane/metabolism , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL