Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 115(1): 155-174, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37025008

ABSTRACT

Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Clathrin/metabolism , Arabidopsis Proteins/metabolism , Oryza/metabolism , Arabidopsis/genetics , Salicylic Acid/metabolism , Plant Roots/metabolism , Protein Transport , Indoleacetic Acids/metabolism
2.
BMC Genomics ; 23(Suppl 1): 559, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931959

ABSTRACT

BACKGROUND: Plants synthesize metabolites to adapt to a continuously changing environment. Metabolite biosynthesis often occurs in response to the tissue-specific combinatorial developmental cues that are transcriptionally regulated. Polyphyllins are the major bioactive components in Paris species that demonstrate hemostatic, anti-inflammatory and antitumor effects and have considerable market demands. However, the mechanisms underlying polyphyllin biosynthesis and regulation during plant development have not been fully elucidated. RESULTS: Tissue samples of P. polyphylla var. yunnanensis during the four dominant developmental stages were collected and investigated using high-performance liquid chromatography and RNA sequencing. Polyphyllin concentrations in the different tissues were found to be highly dynamic across developmental stages. Specifically, decreasing trends in polyphyllin concentration were observed in the aerial vegetative tissues, whereas an increasing trend was observed in the rhizomes. Consistent with the aforementioned polyphyllin concentration trends, different patterns of spatiotemporal gene expression in the vegetative tissues were found to be closely related with polyphyllin biosynthesis. Additionally, molecular dissection of the pathway components revealed 137 candidate genes involved in the upstream pathway of polyphyllin backbone biosynthesis. Furthermore, gene co-expression network analysis revealed 74 transcription factor genes and one transporter gene associated with polyphyllin biosynthesis and allocation. CONCLUSIONS: Our findings outline the framework for understanding the biosynthesis and accumulation of polyphyllins during plant development and contribute to future research in elucidating the molecular mechanism underlying polyphyllin regulation and accumulation in P. polyphylla.


Subject(s)
Liliaceae , Saponins , Chromatography, High Pressure Liquid , Liliaceae/genetics , RNA-Seq , Rhizome , Saponins/chemistry
3.
Plant Cell Environ ; 44(6): 1846-1857, 2021 06.
Article in English | MEDLINE | ID: mdl-33576018

ABSTRACT

Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.


Subject(s)
DNA Transposable Elements/genetics , Oryza/physiology , Plant Proteins/genetics , Adaptation, Physiological/genetics , Dehydration , Droughts , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mutation , Oryza/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified , Promoter Regions, Genetic , Seedlings/genetics , Seedlings/physiology
4.
PLoS One ; 15(12): e0244404, 2020.
Article in English | MEDLINE | ID: mdl-33378388

ABSTRACT

The drip irrigation under mulch has become one of significant supporting technologies for cotton industry development in Xinjiang, and has shown the good economic and ecological benefits. With the rapid development of society and economy in Southern Xinjiang, the conventional mode of large-quota winter and spring irrigation, salt leaching and alkali decreasing is difficult to support sustainable development of land and water resources in Southern Xinjiang. This study tries to adjust soil moisture and salt content regulation mode of massive water salt leaching and drip irrigation under mulch in the non-growing period of cotton field in Southern Xinjiang, explores interannual soil salinity change features of drip irrigation cotton field without winter and spring irrigation, and provides experimental basis for drip irrigation technology under mulch which can reduce and exempt cotton irrigation in winter and spring. According to ET0, the dual-factor complete combination experiment involving 3 irrigating water quotas (I1, I2, I3) and 2 irrigation times (T12, T16) was designed, and 6 treatments were involved in total(I1T12,I2T12,I3T12,I1T16,I2T16 and I3T16). The investigation results of four-year (2012-2015) field positioning experiment showed that, under the condition of "germination under drip irrigation" without winter and spring irrigation, increasing irrigation quota and irrigation times could lower 0-100cm soil salinity accumulation, but the soil salinity accumulation degree was 40-100cm, and less than 0-30cm. In the seedling stage, bud stage, blossom and boll-forming stage, and boll opening stage, the average salinity of 0-100cm soil increased by 39.81%, 31.91%, 26.85% and 29.47%, respectively. Increasing irrigation quota and irrigation times could ease interannual soil salinity accumulation degree of cotton field with drip irrigation under mulch, without winter and spring irrigation. 0-100cm soil salinity before sowing was related to the irrigation quota of cotton in the growing stage of the last year. The larger the irrigation quota was, the smaller the soil salinity before sowing would be. The accumulation amount of soil salinity at the end of growing stage under different treatments was lower than that before sowing. The drip irrigation of cotton under mulch in the growing stage could effectively regulate soil salinity distribution and space-time migration process in the growing stage of cotton. Compared with the beginning of 2012, 0-100cm average soil salinity under 3 irrigation quotas (I1, I2, I3) was 33.66%, 5.60% and 1.24%, respectively. Salt accumulating rates under 12 irrigations and 16 irrigations were 20.66% and 6.33%, respectively. The soil had the risk of salinization when the "germination under drip irrigation" without winter and spring irrigation was used. Such results can provide the reference for prevention and treatment of soil moisture and salt content of cotton field with drip irrigation under mulch in the arid region.


Subject(s)
Agricultural Irrigation/methods , Gossypium/growth & development , Soil/chemistry , China , Salinity , Seasons
5.
Sci Rep ; 8(1): 8944, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895936

ABSTRACT

We investigated whether stable eukaryotic translation initiation factor 3e/inter 6 (eIF-3e/Int6) RNA-silencing (siRNA-Int6) can ameliorate pre-eclampsia (PE) by promoting angiogenesis in an N-nitro-L-arginine methyl ester (L-NAME)-induced rat pre-eclampsia (PE) model. Twenty-four pregnant female Sprague-Dawley rats were allocated into 4 groups, including controls (Con) without any treatment, and 18 from gestational day (GD) 7 to GD17 L-NAME-treated rats, which were divided into stable siRNA-Int6 transfected (siRNA-Int6), negative vector control siRNA (NC-siRNA) and PE control (PE-Con) groups. All adenovirus siRNA transfections were performed on GD7 via intravenous tail injection. On GD0, GD11 and GD17, blood pressure, and on GD6 and GD17, protein estimations in 24 h urine samples were conducted. All animals were sacrificed on GD18. In the PE-Con group, placental Int6 was expressed to a significantly greater level than in the Con group, which was reversed by the application of siRNA-Int6. Blood pressure and proteinuria were significantly lower in the siRNA-Int6 group than in the PRE-Con group. As shown by CD31 and IB4 expression, placental micro-vascular density (MVD) was significantly higher in the siRNA-Int6 group than in the PE-Con and NC-siRNA groups, which has accompanied by enhanced trophoblast invasion. Int6 silencing alleviated the maternal clinical manifestations of pre-eclampsia and promoted placental angiogenesis in pregnant L-NAME-treated rats.


Subject(s)
Eukaryotic Initiation Factor-3/genetics , Neovascularization, Physiologic/genetics , Placenta/blood supply , Pre-Eclampsia/genetics , RNA Interference , Animals , Blood Pressure/genetics , Blood Pressure/physiology , Disease Models, Animal , Eukaryotic Initiation Factor-3/metabolism , Female , Humans , NG-Nitroarginine Methyl Ester , Neovascularization, Physiologic/physiology , Placenta/metabolism , Pre-Eclampsia/chemically induced , Pre-Eclampsia/metabolism , Pregnancy , Proteinuria/genetics , Proteinuria/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...