Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 17(7): 6330-6340, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36939760

ABSTRACT

Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid "intrinsic" cooling rate of ∼18 ± 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.

2.
Nanoscale ; 15(7): 3243-3254, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723120

ABSTRACT

We demonstrate a novel and versatile sensing platform, based on electrolyte-gated graphene field-effect transistors, for easy, low-cost and scalable production of chemical sensor test strips. The Lab-on-PCB platform is enabled by low-boiling, low-surface-tension sprayable graphene ink deposited on a substrate manufactured using a commercial printed circuit board process. We demonstrate the versatility of the platform by sensing pH and Na+ concentrations in an aqueous solution, achieving a sensitivity of 143 ± 4 µA per pH and 131 ± 5 µA per log10Na+, respectively, in line with state-of-the-art graphene chemical sensing performance.

3.
Nanotechnology ; 33(21)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35168225

ABSTRACT

Printed electronics have been attracting significant interest for their potential to enable flexible and wearable electronic applications. Together with printable semiconductors, solution-processed dielectric inks are key in enabling low-power and high-performance printed electronics. In the quest for suitable dielectrics inks, two-dimensional materials such as hexagonal boron nitride (h-BN) have emerged in the form of printable dielectrics. In this work, we report barium titanate (BaTiO3) nanoparticles as an effective additive for inkjet-printable h-BN inks. The resulting inkjet printed BaTiO3/h-BN thin films reach a dielectric constant (εr) of âˆ¼16 by adding 10% of BaTiO3nanoparticles (in their volume fraction to the exfoliated h-BN flakes) in water-based inks. This result enabled all-inkjet printed flexible capacitors withC âˆ¼ 10.39 nF cm-2, paving the way to future low power, printed and flexible electronics.

SELECTION OF CITATIONS
SEARCH DETAIL