Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36914039

ABSTRACT

Given the inevitable exposure of Eriocheir sinensis (E. sinensis) to fungicides in rice-crab co-culture systems, understanding the potential effect of fungisides is important for practical application. Molting is a crucial development process of E. sinensis, which is regulated by endocrine system and genetic factors, and is susceptible to exogenous chemicals. However, the impact of fungicides application on the molting of E. sinensis have been rarely reported. In the present study, propiconazole, a widely used fungicide for rice disease management, was found to exert potential effects on the molting of E. sinensis at residual-related level in the rice-crab co-culture fields. After 14 days of short-term exposure to propiconazole, female crabs exhibited remarkably higher levels of hemolymph ecdysone than males. When the exposure was extended to 28 days, propiconazole markedly accelerated molt-inhibiting hormone expression by 3.3-fold, ecdysone receptor expression by 7.8-fold, and crustacean retinoid X receptor expression by 9.6-fold in male crabs, while it showed the opposite effect in females with suppressed gene expression. Propiconazole also induced the activity of N-acetylglucosaminidase in male crabs rather than females during the experiments. Our study suggests that propiconazole exerts sex-specific effects on the molting of E. sinensis. The impact of propiconazole application in the rice-crab co-culture systems remains more assessment to avoid affecting the growth of cultured E. sinensis.


Subject(s)
Brachyura , Fungicides, Industrial , Animals , Male , Female , Molting/genetics , Fungicides, Industrial/toxicity , Triazoles/toxicity
2.
Environ Pollut ; 316(Pt 1): 120514, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36309304

ABSTRACT

Tricyclazole is used as a common fungicide to control rice blast. However, studies on the toxicity of tricyclazole to crabs in the rice-crab co-culture system are still extremely rare. Here, the environmental dissipation of tricyclazole was monitored in this model, and the potential toxicity of tricyclazole to E. sinensis at environmental concentrations as well as the dietary risk was evaluated. The results showed that tricyclazole had no significant acute toxicity to E. sinensis (LC50 > 100 mg/L), while it promoted body weight gain. Tricyclazole in the hepatopancreas had a higher persistent bioaccumulation risk than in the muscle. Tricyclazole suppressed the immune response of E. sinensis under prolonged exposure and there should be gender differences, with females being more sensitive. Lipid metabolism enzymes were also significantly inhibited. While tricyclazole stimulated males molting but prolonged molting duration, both molting and duration of females were also disturbed. The dietary risk assessment indicated that tricyclazole intake from current crab consumption was low risk. This evidence demonstrated that tricyclazole may have potential risks to individual development, nutritional quality, and economic value on E. sinensis and should be used with caution in rice-crab co-culture system whenever possible.


Subject(s)
Brachyura , Hepatopancreas , Animals , Female , Male , Coculture Techniques , Hepatopancreas/metabolism , Seafood , China
3.
Fish Shellfish Immunol ; 131: 646-653, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36330873

ABSTRACT

Rice crab co-culture is a new integrated farming model in China. The application of triazole plant growth regulators (PRGs) is often used as an advantageous option to combat rice lodging. However, there is still a gap regarding the toxicity of these PRGs on the growth and development of the Chinese mitten crab (Eriocheir sinensis, E. sinensis). Here the effect of triazoles (paclobutrazol and uniconazole) on the molting mechanism of E. sinensis was investigated. Monitoring of regulatory genes associated with molting showed that the two PRGs were found to inhibit the expression of ecdysteroid hormone (EH), ecdysteroid receptors gene (EcR), and retinoid X receptors gene (RXR) and induce secretion of molt-inhibiting hormone (MIH) gene. In addition, the activities of chitinase (CHIA) and N-acetyl-ß-d-aminoglucosidase (ß-NAGase) were also inhibited by exposure to PRGs. Exposure to PRGs also elevated the mRNA expression of the growth-related myostatin gene (MSTN). These results revealed that there is a long-term risk of exposure to triazoles PRGs that may inhibit molting and affect normal development and immune system of E. sinensis.


Subject(s)
Brachyura , Molting , Animals , Brachyura/genetics , Brachyura/metabolism , Ecdysteroids/metabolism , Ecdysteroids/pharmacology , Molting/genetics , Plant Growth Regulators/pharmacology , Triazoles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...