Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 30(9): 1064-1075.e8, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37716347

ABSTRACT

Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , T-Lymphocytes , Lymphocyte Activation , Receptors, Antigen, T-Cell , CD4-Positive T-Lymphocytes
3.
Mol Cell ; 83(8): 1340-1349.e7, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37084714

ABSTRACT

The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.


Subject(s)
Glycerol-3-Phosphate Dehydrogenase (NAD+) , Kidney Neoplasms , Lipids , Humans , Glycerol/metabolism , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Lipids/biosynthesis , NAD/metabolism , Oxidation-Reduction , Phosphates/metabolism
5.
Cell Metab ; 35(3): 487-503.e7, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36841242

ABSTRACT

Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , NF-E2-Related Factor 2 , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , NAD/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Signal Transduction
6.
Geroscience ; 45(1): 415-426, 2023 02.
Article in English | MEDLINE | ID: mdl-35997888

ABSTRACT

With the goal of identifying metabolites that significantly correlate with the protective e2 allele of the apolipoprotein E (APOE) gene, we established a consortium of five studies of healthy aging and extreme human longevity with 3545 participants. This consortium includes the New England Centenarian Study, the Baltimore Longitudinal Study of Aging, the Arivale study, the Longevity Genes Project/LonGenity studies, and the Long Life Family Study. We analyzed the association between APOE genotype groups E2 (e2e2 and e2e3 genotypes, N = 544), E3 (e3e3 genotypes, N = 2299), and E4 (e3e4 and e4e4 genotypes, N = 702) with metabolite profiles in the five studies and used fixed effect meta-analysis to aggregate the results. Our meta-analysis identified a signature of 19 metabolites that are significantly associated with the E2 genotype group at FDR < 10%. The group includes 10 glycerolipids and 4 glycerophospholipids that were all higher in E2 carriers compared to E3, with fold change ranging from 1.08 to 1.25. The organic acid 6-hydroxyindole sulfate, previously linked to changes in gut microbiome that were reflective of healthy aging and longevity, was also higher in E2 carriers compared to E3 carriers. Three sterol lipids and one sphingolipid species were significantly lower in carriers of the E2 genotype group. For some of these metabolites, the effect of the E2 genotype opposed the age effect. No metabolites reached a statistically significant association with the E4 group. This work confirms and expands previous results connecting the APOE gene to lipid regulation and suggests new links between the e2 allele, lipid metabolism, aging, and the gut-brain axis.


Subject(s)
Apolipoproteins E , Polymorphism, Genetic , Aged, 80 and over , Humans , Apolipoprotein E2/genetics , Alleles , Longitudinal Studies , Apolipoproteins E/genetics
7.
Elife ; 102021 08 16.
Article in English | MEDLINE | ID: mdl-34396954

ABSTRACT

Natural killer (NK) cells are essential for early protection against virus infection and must metabolically adapt to the energy demands of activation. Here, we found upregulation of the metabolic adaptor hypoxia-inducible factor-1α (HIF1α) is a feature of mouse NK cells during murine cytomegalovirus (MCMV) infection in vivo. HIF1α-deficient NK cells failed to control viral load, causing increased morbidity. No defects were found in effector functions of HIF1αKO NK cells; however, their numbers were significantly reduced. Loss of HIF1α did not affect NK cell proliferation during in vivo infection and in vitro cytokine stimulation. Instead, we found that HIF1α-deficient NK cells showed increased expression of the pro-apoptotic protein Bim and glucose metabolism was impaired during cytokine stimulation in vitro. Similarly, during MCMV infection HIF1α-deficient NK cells upregulated Bim and had increased caspase activity. Thus, NK cells require HIF1α-dependent metabolic functions to repress Bim expression and sustain cell numbers for an optimal virus response.


Subject(s)
Cytomegalovirus Infections/virology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Killer Cells, Natural/immunology , Lymphocyte Activation , Muromegalovirus/physiology , Animals , Cell Proliferation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice
8.
iScience ; 24(6): 102651, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151238

ABSTRACT

A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML. To identify metabolic targets that interact with LSD1 inhibition to promote myeloid maturation, we screened a small molecule library to identify druggable substrates. We found that differentiation caused by LSD1 inhibition is enhanced by combined perturbation of purine nucleotide salvage and de novo lipogenesis pathways, and identified multiple lines of evidence to support the specificity of these pathways and suggest a potential basis of how perturbation of these pathways may interact synergistically to promote myeloid differentiation. In sum, these findings suggest potential drug combination strategies in the treatment of AML.

9.
Cancer Immunol Res ; 9(2): 184-199, 2021 02.
Article in English | MEDLINE | ID: mdl-33277233

ABSTRACT

Metabolic constraints in the tumor microenvironment constitute a barrier to effective antitumor immunity and similarities in the metabolic properties of T cells and cancer cells impede the specific therapeutic targeting of metabolism in either population. To identify distinct metabolic vulnerabilities of CD8+ T cells and cancer cells, we developed a high-throughput in vitro pharmacologic screening platform and used it to measure the cell type-specific sensitivities of activated CD8+ T cells and B16 melanoma cells to a wide array of metabolic perturbations during antigen-specific killing of cancer cells by CD8+ T cells. We illustrated the applicability of this screening platform by showing that CD8+ T cells were more sensitive to ferroptosis induction by inhibitors of glutathione peroxidase 4 (GPX4) than B16 and MC38 cancer cells. Overexpression of ferroptosis suppressor protein 1 (FSP1) or cytosolic GPX4 yielded ferroptosis-resistant CD8+ T cells without compromising their function, while genetic deletion of the ferroptosis sensitivity-promoting enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) protected CD8+ T cells from ferroptosis but impaired antitumor CD8+ T-cell responses. Our screen also revealed high T cell-specific vulnerabilities for compounds targeting NAD+ metabolism or autophagy and endoplasmic reticulum (ER) stress pathways. We focused the current screening effort on metabolic agents. However, this in vitro screening platform may also be valuable for rapid testing of other types of compounds to identify regulators of antitumor CD8+ T-cell function and potential therapeutic targets.


Subject(s)
Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Ferroptosis/drug effects , Tumor Cells, Cultured/drug effects , Animals , Autophagy/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/drug effects , Female , Ferroptosis/genetics , Humans , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy
10.
Cell ; 183(7): 1848-1866.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33301708

ABSTRACT

Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat diet (HFD)-induced obesity impairs CD8+ T cell function in the murine TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8+ T cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8+ T cells do not. These differential adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting interventions that exploit metabolism to improve cancer immunotherapy.


Subject(s)
Immunity , Neoplasms/immunology , Neoplasms/metabolism , Obesity/metabolism , Tumor Microenvironment , Adiposity , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation , Diet, High-Fat , Fatty Acids/metabolism , HEK293 Cells , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kinetics , Lymphocytes, Tumor-Infiltrating , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Principal Component Analysis , Procollagen-Proline Dioxygenase/metabolism , Proteomics
11.
J Biol Chem ; 295(25): 8505-8513, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32371392

ABSTRACT

Mitochondrial DNA gene expression is coordinately regulated both pre- and post-transcriptionally, and its perturbation can lead to human pathologies. Mitochondrial rRNAs (mt-rRNAs) undergo a series of nucleotide modifications after release from polycistronic mitochondrial RNA precursors, which is essential for mitochondrial ribosomal biogenesis. Cytosine N4-methylation (m4C) at position 839 (m4C839) of the 12S small subunit mt-rRNA was identified decades ago; however, its biogenesis and function have not been elucidated in detail. Here, using several approaches, including immunofluorescence, RNA immunoprecipitation and methylation assays, and bisulfite mapping, we demonstrate that human methyltransferase-like 15 (METTL15), encoded by a nuclear gene, is responsible for 12S mt-rRNA methylation at m4C839 both in vivo and in vitro We tracked the evolutionary history of RNA m4C methyltransferases and identified a difference in substrate preference between METTL15 and its bacterial ortholog rsmH. Additionally, unlike the very modest impact of a loss of m4C methylation in bacterial small subunit rRNA on the ribosome, we found that METTL15 depletion results in impaired translation of mitochondrial protein-coding mRNAs and decreases mitochondrial respiration capacity. Our findings reveal that human METTL15 is required for mitochondrial function, delineate the evolution of methyltransferase substrate specificities and modification patterns in rRNA, and highlight a differential impact of m4C methylation on prokaryotic ribosomes and eukaryotic mitochondrial ribosomes.


Subject(s)
Methyltransferases/metabolism , Mitochondria/metabolism , RNA, Ribosomal/metabolism , CRISPR-Cas Systems/genetics , Escherichia coli Proteins/metabolism , Evolution, Molecular , Gene Editing , Genome, Mitochondrial , Glycolysis , Humans , Kinetics , Methylation , Methyltransferases/genetics , Microscopy, Fluorescence , Mitochondria/genetics , RNA, Messenger/metabolism , RNA, Mitochondrial/metabolism , RNA, Ribosomal/genetics , Substrate Specificity
12.
Nat Commun ; 11(1): 2587, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444616

ABSTRACT

The gut microbiota metabolizes drugs and alters their efficacy and toxicity. Diet alters drugs, the metabolism of the microbiota, and the host. However, whether diet-triggered metabolic changes in the microbiota can alter drug responses in the host has been largely unexplored. Here we show that dietary thymidine and serine enhance 5-fluoro 2'deoxyuridine (FUdR) toxicity in C. elegans through different microbial mechanisms. Thymidine promotes microbial conversion of the prodrug FUdR into toxic 5-fluorouridine-5'-monophosphate (FUMP), leading to enhanced host death associated with mitochondrial RNA and DNA depletion, and lethal activation of autophagy. By contrast, serine does not alter FUdR metabolism. Instead, serine alters E. coli's 1C-metabolism, reduces the provision of nucleotides to the host, and exacerbates DNA toxicity and host death without mitochondrial RNA or DNA depletion; moreover, autophagy promotes survival in this condition. This work implies that diet-microbe interactions can alter the host response to drugs without altering the drug or the host.


Subject(s)
Caenorhabditis elegans/drug effects , Floxuridine/toxicity , Food-Drug Interactions , Gastrointestinal Microbiome/drug effects , Serine/pharmacology , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Dietary Supplements , Escherichia coli/drug effects , Escherichia coli/metabolism , Floxuridine/pharmacokinetics , Folic Acid/metabolism , Gastrointestinal Microbiome/physiology , Thymidine/analogs & derivatives , Thymidine/metabolism , Thymidine/pharmacokinetics , Thymidine/pharmacology , Uracil Nucleotides/metabolism , Uracil Nucleotides/pharmacokinetics
13.
Anal Chem ; 92(2): 1856-1864, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31804057

ABSTRACT

Small-molecule drugs and toxicants commonly interact with more than a single protein target, each of which may have unique effects on cellular phenotype. Although untargeted metabolomics is often applied to understand the mode of action of these chemicals, simple pairwise comparisons of treated and untreated samples are insufficient to resolve the effects of disrupting two or more independent protein targets. Here, we introduce a workflow for dose-response metabolomics to evaluate chemicals that potentially affect multiple proteins with different potencies. Our approach relies on treating samples with various concentrations of compound prior to analysis with mass spectrometry-based metabolomics. Data are then processed with software we developed called TOXcms, which statistically evaluates dose-response trends for each metabolomic signal according to user-defined tolerances and subsequently groups those that follow the same pattern. Although TOXcms was built upon the XCMS framework, it is compatible with any metabolomic data-processing software. Additionally, to enable correlation of dose responses beyond those that can be measured by metabolomics, TOXcms also accepts data from respirometry, cell death assays, other omic platforms, etc. In this work, we primarily focus on applying dose-response metabolomics to find off-target effects of drugs. Using metformin and etomoxir as examples, we demonstrate that each group of dose-response patterns identified by TOXcms signifies a metabolic response to a different protein target with a unique drug binding affinity. TOXcms is freely available on our laboratory website at http://pattilab.wustl.edu/software/toxcms .


Subject(s)
Epoxy Compounds/pharmacology , Metabolomics/methods , Metformin/pharmacology , RNA, Small Interfering/pharmacology , Rotenone/pharmacology , Software/statistics & numerical data , Algorithms , Carnitine O-Palmitoyltransferase/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Knockdown Techniques , HEK293 Cells , Humans , Metabolomics/statistics & numerical data , RNA, Small Interfering/genetics
14.
Elife ; 82019 01 29.
Article in English | MEDLINE | ID: mdl-30694178

ABSTRACT

Proliferating cells often have increased glucose consumption and lactate excretion relative to the same cells in the quiescent state, a phenomenon known as the Warburg effect. Despite an increase in glycolysis, however, here we show that non-transformed mouse fibroblasts also increase oxidative phosphorylation (OXPHOS) by nearly two-fold and mitochondrial coupling efficiency by ~30% during proliferation. Both increases are supported by mitochondrial fusion. Impairing mitochondrial fusion by knocking down mitofusion-2 (Mfn2) was sufficient to attenuate proliferation, while overexpressing Mfn2 increased proliferation. Interestingly, impairing mitochondrial fusion decreased OXPHOS but did not deplete ATP levels. Instead, inhibition caused cells to transition from excreting aspartate to consuming it. Transforming fibroblasts with the Ras oncogene induced mitochondrial biogenesis, which further elevated OXPHOS. Notably, transformed fibroblasts continued to have elongated mitochondria and their proliferation remained sensitive to inhibition of Mfn2. Our results suggest that cell proliferation requires increased OXPHOS as supported by mitochondrial fusion.


Subject(s)
Cell Proliferation/genetics , GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Oxidative Phosphorylation , 3T3-L1 Cells , Adenosine Triphosphate/biosynthesis , Animals , Aspartic Acid/metabolism , Biological Transport , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Genes, ras , Glycolysis/genetics , HeLa Cells , Humans , MCF-7 Cells , Mice , Mitochondria/metabolism , Organelle Biogenesis , Oxygen Consumption/genetics , Transfection , Transgenes
15.
Cell Rep ; 24(9): 2479-2492.e6, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157439

ABSTRACT

Plasma cell survival and the consequent duration of immunity vary widely with infection or vaccination. Using fluorescent glucose analog uptake, we defined multiple developmentally independent mouse plasma cell populations with varying lifespans. Long-lived plasma cells imported more fluorescent glucose analog, expressed higher surface levels of the amino acid transporter CD98, and had more autophagosome mass than did short-lived cells. Low amino acid concentrations triggered reductions in both antibody secretion and mitochondrial respiration, especially by short-lived plasma cells. To explain these observations, we found that glutamine was used for both mitochondrial respiration and anaplerotic reactions, yielding glutamate and aspartate for antibody synthesis. Endoplasmic reticulum (ER) stress responses, which link metabolism to transcriptional outcomes, were similar between long- and short-lived subsets. Accordingly, population and single-cell transcriptional comparisons across mouse and human plasma cell subsets revealed few consistent and conserved differences. Thus, plasma cell antibody secretion and lifespan are primarily defined by non-transcriptional metabolic traits.


Subject(s)
Plasma Cells/metabolism , Humans , Longevity
16.
PLoS Biol ; 16(3): e2003782, 2018 03.
Article in English | MEDLINE | ID: mdl-29596410

ABSTRACT

It has been suggested that some cancer cells rely upon fatty acid oxidation (FAO) for energy. Here we show that when FAO was reduced approximately 90% by pharmacological inhibition of carnitine palmitoyltransferase I (CPT1) with low concentrations of etomoxir, the proliferation rate of various cancer cells was unaffected. Efforts to pharmacologically inhibit FAO more than 90% revealed that high concentrations of etomoxir (200 µM) have an off-target effect of inhibiting complex I of the electron transport chain. Surprisingly, however, when FAO was reduced further by genetic knockdown of CPT1, the proliferation rate of these same cells decreased nearly 2-fold and could not be restored by acetate or octanoic acid supplementation. Moreover, CPT1 knockdowns had altered mitochondrial morphology and impaired mitochondrial coupling, whereas cells in which CPT1 had been approximately 90% inhibited by etomoxir did not. Lipidomic profiling of mitochondria isolated from CPT1 knockdowns showed depleted concentrations of complex structural and signaling lipids. Additionally, expression of a catalytically dead CPT1 in CPT1 knockdowns did not restore mitochondrial coupling. Taken together, these results suggest that transport of at least some long-chain fatty acids into the mitochondria by CPT1 may be required for anabolic processes that support healthy mitochondrial function and cancer cell proliferation independent of FAO.


Subject(s)
Carnitine O-Palmitoyltransferase/physiology , Cell Proliferation/physiology , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/metabolism , Cell Line, Tumor , Electron Transport/drug effects , Fatty Acids/metabolism , Gene Knockdown Techniques , Humans , Mitochondria/drug effects , Mitochondria/physiology , Oxidation-Reduction/drug effects , Oxygen Consumption , RNA Interference
17.
Metabolomics ; 122016 Sep.
Article in English | MEDLINE | ID: mdl-27721678

ABSTRACT

INTRODUCTION: Palmitate, the typical end product released from fatty acid synthase, is of interest to many researchers performing metabolomics. Although palmitate can be readily detected by using mass spectrometry, many metabolomic platforms involve the use of plastic consumables that introduce a competing background signal of palmitate. OBJECTIVES: The goal of this study was to quantify palmitate contamination in metabolomics and isotope tracer studies and to examine the reliability of approaches for reducing error. METHODS: We measured the quantitative error introduced by palmitate contamination from 4 vendors of plastic consumables used in combination with several different extraction solvents. RESULTS: The background palmitate signal was as much as sixfold higher than the biological palmitate signal from 4 million 3T3-L1 cells. Importantly, the palmitate contamination signal was highly variable between plastic consumables (even within the same lot) and therefore could not be accurately removed by subtracting the background as measured from a blank. In addition to affecting relative and absolute quantitation, the palmitate background signal from disposable plastics also led to the underestimation of labeled palmitate in isotope tracer experiments. CONCLUSION: When measuring palmitate standard solutions, the best results were obtained when glass vials and glass pipettes were used. However, much of the palmitate background signal could be eliminated by pre-rinsing plastic vials and plastic pipette tips with methanol prior to sample introduction. For isotope tracer studies, error could also be minimized by estimating palmitate enrichment from palmitoylcarnitine, which does not have a competing contamination signal from plastic consumables.

18.
Biochim Biophys Acta ; 1861(9 Pt A): 1005-1014, 2016 09.
Article in English | MEDLINE | ID: mdl-27249207

ABSTRACT

Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapoptosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OA-mediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA co-treatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA's protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA's ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Oleic Acid/metabolism , Palmitic Acid/metabolism , Triglycerides/biosynthesis , Animals , Apoptosis/genetics , Diacylglycerol O-Acyltransferase/metabolism , Esterification/genetics , Gene Knockout Techniques , Hepatocytes/metabolism , Lipid Metabolism/genetics , Lipogenesis/genetics , Oxidative Stress , Rats , Triglycerides/metabolism
19.
Cell Chem Biol ; 23(4): 483-93, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27049668

ABSTRACT

Cellular proliferation requires the formation of new membranes. It is often assumed that the lipids needed for these membranes are synthesized mostly de novo. Here, we show that proliferating fibroblasts prefer to take up palmitate from the extracellular environment over synthesizing it de novo. Relative to quiescent fibroblasts, proliferating fibroblasts increase their uptake of palmitate, decrease fatty acid degradation, and instead direct more palmitate to membrane lipids. When exogenous palmitate is provided in the culture media at physiological concentrations, de novo synthesis accounts for only a minor fraction of intracellular palmitate in proliferating fibroblasts as well as proliferating HeLa and H460 cells. Blocking fatty acid uptake decreased the proliferation rate of fibroblasts, HeLa, and H460 cells, while supplementing media with exogenous palmitate resulted in decreased glucose uptake and rendered cells less sensitive to glycolytic inhibition. Our results suggest that cells scavenging exogenous lipids may be less susceptible to drugs targeting glycolysis and de novo lipid synthesis.


Subject(s)
Fatty Acids/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Membrane Lipids/metabolism , 3T3-L1 Cells , Animals , Cell Line, Tumor , Cell Proliferation , HeLa Cells , Humans , Mice
20.
J Am Chem Soc ; 134(49): 20025-8, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23194175

ABSTRACT

Ambipolar transport behavior in isoindigo-based conjugated polymers is observed for the first time. Fluorination on the isoindigo unit effectively lowers the LUMO level of the polymer and significantly increases the electron mobility from 10(-2) to 0.43 cm(2) V(-1) s(-1) while maintaining high hole mobility up to 1.85 cm(2) V(-1) s(-1) for FET devices fabricated in ambient. Further investigation indicates that fluorination also affects the interchain interactions of polymer backbones, thus leading to different polymer packing in thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...